Communication

Photocatalyzed Desulfurative Cyclization of 2-Aminobenzyl Alcohols and Isothiocyanates for the Synthesis of 2‑Amino-1,3-Benzoxazines

  • Wang Chencheng ,
  • Ouyang Banlai ,
  • Zhong Pinyong ,
  • Zhang Yingrong ,
  • Liu Jin-Biao
Expand
  • aSchool of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China;
    bCollege of Chemistry and Food Science, Nanchang Normal University, Nanchang 330032, China

Received date: 2025-06-15

  Online published: 2025-07-15

Supported by

National Natural Science Foundation of China (No. 21961014).

Abstract

2-Amino-1,3-benzoxazines, as privileged heterocyclic scaffolds, exhibit broad applications in pharmaceuticals and functional materials. This study presents a metal-free visible-light photocatalytic strategy using rhodamine B (Rh.B) as the photocatalyst and molecular oxygen as a green oxidant, enabling the efficient one-step synthesis of 2-amino-1,3-benzoxazine derivatives via desulfurative cyclization of 2-aminobenzyl alcohols and isothiocyanates. Systematic optimization revealed acetonitrile as the optimal solvent and 4-dimethylaminopyridine as the preferred base, achieving an 85% yield of the target product under ambient air and blue LED irradiation. Substrate scope evaluation demonstrated excellent compatibility with halogen substituents (F, Cl, Br, I), electron-donating (-CH3, -OCH3), electron-withdrawing (-NO2, -CN), naphthyl, and pyridyl groups, affording products in 45-90% yields. Mechanistic investigations, including radical trapping experiments and atmosphere-controlled studies, confirmed a radical-mediated pathway. The reaction initiates with thiourea intermediate formation, followed by Rh.B*-triggered single-electron transfer to generate a sulfur-centered radical, which undergoes oxygen-assisted desulfurization and subsequent intramolecular C-N/C-O bond formation. This protocol eliminates the need for metal catalysts, stoichiometric oxidants, or harsh conditions, offering a sustainable and operationally simple route for benzoxazine synthesis. The typical operational steps are as follows: In a test tube, 2-aminobenzyl alcohol (24.6 mg, 0.2 mmol), rhodamine B (9.6 mg, 0.02 mmol), p-tolyl isothiocyanate (35.8 mg, 0.24 mmol), and acetonitrile (2 mL) were sequentially added. The mixture was stirred under irradiation with a 10 W blue LED (λmax = 455 nm) at room temperature under air. Reaction progress was monitored by TLC. After completion, the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography using petroleum ether/ethyl acetate (10:1, v/v) as the eluent to afford 3aa as a white solid (40.5 mg, 85% yield).

Cite this article

Wang Chencheng , Ouyang Banlai , Zhong Pinyong , Zhang Yingrong , Liu Jin-Biao . Photocatalyzed Desulfurative Cyclization of 2-Aminobenzyl Alcohols and Isothiocyanates for the Synthesis of 2‑Amino-1,3-Benzoxazines[J]. Acta Chimica Sinica, 0 : 25060220 -25060220 . DOI: 10.6023/A25060220

References

[1] Capasso A.; Biondi A.; Palagiano F.; Bonina F. P.; Montenegro L.; de Caprariis, P.; Pistorio, E.; Sorrentino, L. Eur. Neuropsychopharmacol. 1997, 7, 57.
[2] Palagiano F.; Bonina F. P.; Montenegro L.; Biondi A.; Sorrentino L.; Capasso A.; De Caprariis, P. Pharmazie. 1997, 52, 272.
[3] Capasso A.; Gallo C. J. Med. Chem. 2009, 5, 343.
[4] Goncalves R. V.; Liposki I. Q.; Dias L. W.; Baldissera A. F.; Silveira M. R.D. S.; Ferreira, C. A.; Bonnaud, L.; Basso, N. R. D. S. J. Coat. Technol. Res. 2022, 19, 575.
[5] Koini E. N.; Papazafiri P.; Vassilopoulos A.; Koufaki M.; Horváth Z.; Koncz I.; Virag L.; Papp G. J.; Varro A. J. Med. Chem. 2009, 52, 2328.
[6] Matralis A. N.; Katselou M. G.; Nikitakis A.; Kourounakis A. P. J. Med. Chem. 2011, 54, 5583.
[7] Zhou C.-L.; Lu X.; Xin Z.; Liu J.; Zhang, Y.-F. Prog. Org. Coat. 2013, 76, 1178.
[8] Takeichi T.; Guo Y. Polym.J. 2001, 33, 437.
[9] Agag T.; Jin L.; Ishida H. Polymer. 2009, 50, 5940.
[10] Garg A.; Kant K.; Roy K. K.; Sahoo A.; Malakar C. C.; Gupta S. Mater.Today. 2022, 57, 300.
[11] Wei Z.-B.; Xi K.Acta Chim. Sinica 2025, 83, 266-273. (in Chinese) (魏兆博, 袭锴, 化学学报, 2025, 83, 266-273).
[12] Ghosh H.; Yella R.; Nath J.; Patel B. K. Eur. J. Org.Chem. 2008, 6189.
[13] Yella R.; Patel B. K. J. Comb. Chem. 2010, 12, 754.
[14] Murata Y.; Matsumoto N.; Miyata M.; Kitamura Y.; Kakusawa N.; Matsumura M.; Yasuike S. J. Organomet. Chem. 2018, 859, 18.
[15] Zhang J.-L.; Chen L.; Dong Y.-B.; Yang J.-C.; Wu, Y.-J. Org. Biomol. Chem. 2020, 18, 7425.
[16] Putta V. P.R. K.; Vodnala, N.; Gujjarappa, R.; Tyagi, U.; Garg, A.; Gupta, S.; Pujar, P. P.; Malakar, C. C. J. Org. Chem. 2020, 85, 380.
[17] Fuchiya,A.; Miyamura T.; Nariki H.; Noda S.; Makiyama K.; Sonoda M.; Tanimori S. Synthesis. 2022, 54, 483.
[18] Kant K.; Naik P.; Patel C. K.; Devi T. A.; Jyoti.; Kabi, A. K.; Al-Misned, F. A.; Singh, V.; Malakar, C. C. J. Org. Chem. 2025, 90, 1835.
[19] Sun,F.-K.; Miao M.; Huang Y.; Wu X.-L.; Li, W.-X. Lan X.-B.; Yu J.-Q.; Zhang J.; An Z.-Y. J. Org. Chem. 2025, 90, 2307.
[20] Wang J.-Y.;Xu X.; Zheng,S.-J.; Wei P.-F.; An W.-K. Prog. Chem. 2024, 36, 645. (in Chinese). (王静怡, 许昕, 郑仕佳, 魏丕峰, 安万凯, 化学进展, 2024, 36, 645).
[21] Liu,Y.; Lin,L.-Q.; Han Y.-H.; Liu, Y.-J. Chin. J. Org.Chem. 2020, 40, 4216. (in Chinese). (刘洋, 林立青, 韩莹徽, 刘颖杰, 有机化学, 2020, 40, 4216-4227).
[22] Dai X.-J.; Xu X.-L.; Li X.-N.; Chin. J. Org.Chem. 2013, 33, 2046. (in Chinese). (戴小军, 许孝良, 李小年, 有机化学, 2013, 33, 2046).
[23] Wang C.; Gao,S.-T.; Zhou X.; Wu Q.-H.; Jiao C.-N.; Wang Z. Chin. J. Org. Chem. 2014, 34, 2217. (in Chinese). (王春, 高书涛, 周欣, 吴秋华, 教彩娜, 王志, 有机化学, 2014, 34, 2217).
[24] Xu W.-X.; Dai X.-Q.; Xu H.-J.; Weng, J.-Q. Chin. J. Org.Chem. 2018, 38, 2807. (in Chinese). (徐雯秀, 戴小强, 徐涵靖, 翁健全, 有机化学, 2018, 38, 2807).
[25] Xin C.; Jiang J.; Deng Z.-W.; Ou L.-J.; He W.-M.Acta Chim. Sinica 2024, 82, 1109-1113. (in Chinese). (辛翠, 蒋俊, 邓紫微, 欧丽娟, 何卫民, 化学学报, 2024, 82, 1109-1113).
[26] Bai L.-Y.; Jiang X.-F.Chem Catal. 2023, 3, 100752.
[27] Bai L.-Y.; Jiang X.-F. CCS Chem. 2025, 7, 1889-1902.
[28] Saetan T.; Sukwattanasinitt M.; Wacharasindhu S. Org.Lett. 2020, 22, 7864.
[29] Wan Y.-M.; Wu H.; Ma N.-N.; Zhao J.; Zhang Z.-G.; Gao W.-J.; Zhang G.-S. Chem. Sci. 2021, 12, 15988.
[30] Duan L.-L.; Zhong P.; Liu J.; Liu K.; Luo N. Mol.Catal. 2024, 564, 114344.
[31] Zhong P.-Y.; Yang M.; Liu K.-M.; He W.-M.; Liu, J.-B. Chem. Eur. J. 2024, e202402677.
Outlines

/