Synthesis of Branched Polyethylene Wax using Bulky Iminopyridyl Nickel-Catalyzed Ethylene Chain-Walking Polymerization

  • Xue Hu ,
  • Xu Shan ,
  • Wang Fuzhou ,
  • Chen Changle
Expand
  • aInstitutes of Physical Science and Information Technology, Anhui University, Hefei 230601;
    bDepartment of Polymer Science and Engineering, University of Science and Technology of China, 230026

Received date: 2025-08-25

  Online published: 2025-10-11

Abstract

Polyethylene wax has the physical properties of ethylene oligomer, and can be used as lubricant, stabilizer and adhesive. It is widely used in plastics, rubber, ink, cosmetics and other fields. Its preparation technology has been upgraded from the traditional thermal cracking process to catalytic ethylene polymerization technology. In this work, we synthesized three iminopyridyl nickel catalysts Ni1-Ni3 with different steric effects and bulky 2,4,6-tris(4-fluorophenyl)methyl substituents, and investigated their catalytic performance in ethylene chain-walking polymerization processes. Results demonstrated that catalyst structure and polymerization conditions directly influence ethylene catalytic activity, as well as the molecular weight and branching degree of the resulting polyethylene wax. All catalysts successfully produced branched polyethylene waxes with methyl groups and long side chains, exhibiting narrow dispersion. By adjusting polymerization temperature (0-75℃), the branching structure of polyethylene wax could be effectively controlled (15-61/1000C). A solid powder of polyethylene was obtained at lower temperatures, primarily composed of methyl branches. These catalysts exhibited nearly identical superior performance to toluene in industrial solvent n-heptane. The Ph-substituted Ni2 showed high catalytic activity of 4.55 × 106 g·mol-1·h-1 in n-heptane versus 4.72 × 106 g·mol-1·h-1 in toluene. This technology enables direct synthesis of branched polyethylene wax materials through chain-walk polymerization, featuring simple preparation, cost-effectiveness, high catalytic efficiency, and excellent solvent tolerance. It paves new pathways for high-value production of polyethylene waxes in industrial applications.

Cite this article

Xue Hu , Xu Shan , Wang Fuzhou , Chen Changle . Synthesis of Branched Polyethylene Wax using Bulky Iminopyridyl Nickel-Catalyzed Ethylene Chain-Walking Polymerization[J]. Acta Chimica Sinica, 0 : 3 . DOI: 10.6023/A25080288

References

[1] Chen M.; Chen, C.-L. Chin. Sci. Bull.2022, 67, 1881 (in Chinese). (陈敏, 陈昶乐, 科学通报, 2022, 67, 1881.)
[2] Wang Y.; Yan, J.-L. Acta Chim. Sin.2023, 81, 275 (in Chinese). (汪阳, 阎敬灵, 化学学报, 2023, 81, 275.)
[3] Wang Z.-H.; Chen M.; Chen, C.-L. Acta Chim. Sin.2023, 81, 559 (in Chinese). (王子豪, 陈敏, 陈昶乐, 化学学报, 2023, 81, 559.)
[4] Zhuang Y.-J.Scientia Sinica(Chimica) 2025, 55, 1917 (in Chinese). (庄严俊, 中国科学:化学, 2025,55, 1917.)
[5] Stürzel M.; Mihan S.; Mülhaupt R. Chem. Rev.2016, 116, 1398.
[6] Ciesinska W.; Liszynska B.; Zielinski, J. J. Therm. Anal. Calorim.2016, 125, 1439.
[7] El-Nahas H. H.; Gad Y. H.; El-Hady M. A.; Ramadan, A. B. Radiat Eff. Defects Solids2012, 167, 367.
[8] Khoshsefat M.; Ahmadjo S.; Zohuri G. H.; Ma Y. P.; Sun, W. H. Appl. Organomet. Chem.2023, 37.
[9] Peng L. M.; Xu Z.; Wang W. Y.; Zhao X.; Bao R. Y.; Bai L.; Ke K.; Liu Z. Y.; Yang M. B.; Yang, W. ACS Appl. Energy Mater.2021, 4, 11173.
[10] Xu X.; Zheng A. N.; Zhou X. D.; Guan Y.; Pan Y. F.; Xiao, H. N. J. Appl. Polym. Sci.2015, 132.
[11] Qu L.; Li X.-F.; Li R.-X.; Liu, J.-W. Guangdong Chem. Ind.2025, 52, 77 (in Chinese). (曲琳, 李肖夫, 李汝贤, 刘金伟, 广东化工, 2025, 52, 77.)
[12] Wu J.; Li Y.-P.; Fu Y.-M.; Li, Y.-G. Ind. Miner. Process.2024, 53, 1 (in Chinese). (吴杰, 李阳培, 付延明, 李有桂, 化工矿物与加工, 2024, 53, 1.)
[13] Xu, K. Petrochem. Technol. 2025, 54, 954 (in Chinese). (徐珂, 石油化工, 2025, 54, 954.)
[14] Dayyoub T.; Olifirov L. K.; Chukov D. I.; Kaloshkin S. D.; Kolesnikov E.; Nematulloev S. Materials2020, 13, 18.
[15] Krupa I.; Miková G.; Luyt A. S. Eur. Polym. J. 2007, 43, 4695.
[16] Pan X. L.; Schenning, Ahpj; Shen, L. H.; Bastiaansen, C. W. M. Macromolecules2020, 53, 5599.
[17] Li Y.; Wang, X.-Y; Tang, Y. Acta Chim. Sin.2021, 79, 1320 (in Chinese). (李勇, 王晓艳, 唐勇, 化学学报, 2021, 79, 1320.)
[18] Wang Y.-Y.; Hu X.-Q.; Mu H.-L.; Xia Y.; Chi Y.; Jian, Z.-B. Acta Chim. Sin.2022, 80, 741 (in Chinese). (王玉银, 胡小强, 穆红亮, 夏艳, 迟悦, 简忠保, 化学学报, 2022, 80, 741.)
[19] Terao H.; Ishii S. I.; Saito J.; Matsuura S.; Mitani M.; Nagai N.; Tanaka H.; Fujita T. Macromolecules2006, 39, 8584.
[20] Umare P. S.; Tiwari A. J.; Antony R.; Tembe G. L.; Trivedi, B. Appl. Organomet. Chem.2007, 21, 652.
[21] Baur M.; Lin F.; Morgen T. O.; Odenwald L.; Mecking S. Science2021, 374, 604.
[22] Fan H. J.; Kang X. H.; Dai, S. Y. ACS Catal.2024, 14, 13531.
[23] Johnson L. K.; Killian C. M.; Brookhart, M. J. Am. Chem. Soc.1995, 117, 6414.
[24] Mu H. L.; Zhou G. L.; Hu X. Q.; Jian, Z. B. Coord. Chem. Rev.2021, 435.
[25] Tan C.; Chen, C. L. Angew. Chem. Int. Ed.2019, 58, 7192.
[26] Chen M.; Chen C. ACS Catal.2017, 7, 1308.
[27] Falivene L.; Wiedemann T.; Göttker-Schnetmann I.; Caporaso L.; Cavallo L.; Mecking, S. J. Am. Chem. Soc.2018, 140, 1305.
[28] Ito S.; Ota Y.; Nozaki K. Dalton Trans.2012, 41, 13807.
[29] Liao Y. D.; Cai Q.; Dai, S. Y. Chin. J. Polym. Sci.2023, 41, 233.
[30] Wang Z.; Zhang Y. F.; Ma Y. P.; Hu X. Q.; Solan G. A.; Sun Y.; Sun, W. H. J. Polym. Sci. Pol. Chem.2017, 55, 3494.
[31] Wiedemann T.; Voit G.; Tchernook A.; Roesle P.; Göttker-Schnetmann, I.; Mecking, S.J. Am. Chem. Soc. 2014, 136, 2078.
[32] Zhu C. G.; Ding B. H.; Dai, S. Y. J. Organomet. Chem.2023, 1001, 5.
[33] Dai S. Y.; Chen, C. L. Angew. Chem. Int. Ed.2016, 55, 13281.
[34] Dai S. Y.; Sui X. L.; Chen, C. L. Angew. Chem. Int. Ed.2015, 54, 9948.
[35] Guo L. H.; Zou C.; Dai S. Y.; Chen C. L. Polymers2017, 9, 10.
[36] Li M.; Wang X. B.; Luo Y.; Chen, C. L. Angew. Chem. Int. Ed.2017, 56, 11604.
[37] Lian K. B.; Zhu Y.; Li W. M.; Dai S. Y.; Chen C. L. Macromolecules2017, 50, 6074.
[38] Long B. K.; Eagan J. M.; Mulzer M.; Coates, G. W. Angew. Chem. Int. Ed.2016, 55, 7106.
[39] Na Y. N.; Dai S. Y.; Chen C. L. Macromolecules2018, 51, 4040.
[40] Wang F. Z.; Tanaka R.; Cai Z. G.; Nakayama Y.; Shiono T. Polymer2017, 127, 88.
[41] Wang F. Z.; Tanaka R.; Li Q. S.; Nakayama Y.; Yuan J. C.; Shiono, T. J. Mol. Catal. A-Chem.2015, 398, 231.
[42] Zhang D. F.; Nadres E. T.; Brookhart M.; Daugulis O. Organometallics2013, 32, 5136.
[43] Gan J.; Dai, S. Y. Polym. Chem.2025, 16, 3172.
[44] Laine T. V.; Piironen U.; Lappalainen K.; Klinga M.; Aitola E.; Leskelä, M. J. Organomet. Chem.2000, 606, 112.
[45] Rauf H. S.; Liu Y. S.; Arslan M.; Solanki S. P. S.; Deydier E.; Poli R.; Grabow L. C.; Harth E. ACS Catal.2024, 14, 13136.
[46] Yan Z. P.; Xu G. Y.; Wang H.; Dai, S. Y. Eur. Polym. J.2022, 168, 7.
[47] Figueira C. A.; Lopes P. S.; Gomes C. S. B.; Gomes J. C. S.; Lemos F.; Gomes, P. T. Dalton Trans.2018, 47, 15857.
[48] Figueira C. A.; Lopes P. S.; Gomes C. S. B.; Gomes J. C. S.; Veiros L. F.; Lemos F.; Gomes P. T. Organometallics2019, 38, 614.
[49] Lu L. P.; Mu J. S.; Li, Y. S. Chin. J. Polym. Sci.2014, 32, 603.
[50] Mashima K.; Tsurugi, H. J. Organomet. Chem.2005, 690, 4414.
[51] Su B. Y.; Ta H. B.; Zhang, Q. Z. Chin. J. Catal.2011, 32, 1439.
[52] Sun W. H.; Song S. J.; Li B. X.; Redshaw, C; Hao, X; Li, Y. S.; Wang, F. S. Dalton Trans.2012, 41, 11999.
[53] Chen Z.; Allen K. E.; White P. S.; Daugulis O.; Brookhart M. Organometallics2016, 35, 1756.
[54] Dai S. Y.; Sui X. L.; Chen, C. L. Chem. Commun.2016, 52, 9113.
[55] Rong C. Y.; Wang F. Z.; Li W. M.; Chen M. Organometallics2017, 36, 4458.
[56] Li R.; Sun J.; Tian S.; Zhang Y.; Guo D.; Li W.; Wang F.Z.J. Organomet. Chem. 2019, 880, 261-266.
[57] Khan M. A.; Gui F.; Liao D. H.; Chen M.; Chen A. Polymer2024, 308, 6.
[58] Wang Y. F.; Vignesh A.; Qu M. N.; Wang Z.; Sun Y.; Sun, W. H. Eur. Polym. J.2019, 117, 254.
[59] Gibson V. C.; Redshaw C.; Solan, G. A. Chem. Rev.2007, 107, 1745.
Outlines

/