Article

Hierarchical pore engineering and single-site synergy: in situ construction of functionalized MOF for highly active C-N coupling

  • 吕灿 ,
  • 丁钰敏 ,
  • 余卓斌 ,
  • 周延涛 ,
  • 郭佳瑞 ,
  • 李杰 ,
  • 刘开建 ,
  • 欧金花 ,
  • 刘进轩
Expand
  • a School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002;
    b State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024
1These authors contributed equally

Received date: 2025-08-28

  Online published: 2025-10-28

Supported by

National Natural Science Foundation of China (No.22202067, No.22272018), the Hunan Provincial Natural Science Foundation of China (No. 2024JJ5121), the Research Foundation of Education Bureau of Hunan Province, China (No. 23A0631), the Characteristic Application Discipline of Material Science and Engineering in Hunan Province (No. [2022]351).

Abstract

Nitrogen heterocycles serve as key structural components in modern pharmaceutical, materials, and agrochemical applications. Addressing the intrinsic limitations of conventional C-N coupling catalysts—particularly their poor catalytic efficiency and narrow substrate range—this investigation engineered an advanced catalytic architecture based on an Al(BPY) metal-organic framework (MOF). The synthetic route involved: (1) hydrothermal assembly of microporous Al(BPY) MOF employing 2,2'-bipyridine (BPY, rigid bidentate N-ligand) and AlCl₃, followed by (2) controlled liquid-phase loading of Cu(BF₄)₂ as a bifunctional reagent (dual etchant and metal source). This innovative approach successfully accomplished two critical objectives concurrently: (i) in situ formation of hierarchically porous networks (pore size distribution: 1-50 nm) and (ii) atomic-level precision immobilization of mono-disperse copper active centers. Structural analysis showed BF₄⁻ etches Al-O-C bonds forming mesopores, while Cu²⁺ coordinates with pyridinic N ensuring atomic dispersion. Rigorous evaluation of Al(BPY)-Cu(BF₄)₂'s catalytic behavior in Ullmann C-N coupling reactions established distinct structure-activity correlations, with the Cu(BF₄)₂-modified catalyst exhibiting substantially superior activity relative to Cu(NO₃)₂-, CuCl₂-, and Cu(acac)₂-modified analogs. The Al(BPY)-Cu(BF₄)₂-0.5 demonstrated optimal catalytic performance, achieving 93% product yield under optimized reaction parameters (Cs₂CO₃ base, DMSO solvent, 120°C, 16 h). Notably, the catalyst displayed exceptional functional group compatibility (55%-95% yields across 42 diverse substrates including fused-ring systems, non-aromatic N-heterocycles, and P-H compounds) while maintaining remarkable tolerance toward both electronic and steric perturbations. The system successfully transcended conventional catalytic constraints by accomplishing: (i) efficient coupling of sterically demanding non-aromatic amines and (ii) pioneering MOF-mediated C-P bond formation—the first documented instance of such transformation in MOF-based catalytic systems. Furthermore, the material exhibited outstanding cycling stability, retaining >94% initial activity through 8 successive reaction cycles with negligible copper leaching (<0.2 ppm). The exceptional catalytic efficiency originates from synergistic interplay between hierarchically porous channels (facilitating enhanced mass transport and active site accessibility) and atomic Cu centers (activating aryl iodides and X-H bonds).

Cite this article

吕灿 , 丁钰敏 , 余卓斌 , 周延涛 , 郭佳瑞 , 李杰 , 刘开建 , 欧金花 , 刘进轩 . Hierarchical pore engineering and single-site synergy: in situ construction of functionalized MOF for highly active C-N coupling[J]. Acta Chimica Sinica, 0 : 25080293 -25080293 . DOI: 10.6023/A25080293

References

[1] Chakraborty S.; Barik S.; Biju A. T.Chem. Soc. Rev. 2025, 54 (3), 1102-1124.
[2] Wang J. W.; Xue H.; Qu Y. Y.; Jiang R. N.; Yan F. C.; Hiu, H. Chinese J. Org. Chem.2025, 45(01), 151-167(in Chinese). (王君伟, 薛皓, 曲英瑜, 姜若楠, 闫法超, 刘会, 有机化学, 2025, 45(01), 151-167.)
[3] Du M.; Yang B. C.; Chen Q.; Deng L.Acta Chim. Sinica 2024, 82(09), 932-939(in Chinese). (杜牧, 杨程博, 陈琦, 邓亮, 化学学报2024, 82 (09), 932-939.)
[4] Liu S. S.; Dong W. W.; Li Z. Z.; Zhang Y. Y.; Li C.; Jiao L. Y.Acta Chim. Sinica 2025, 83(05), 479-487(in Chinese). (刘珊珊, 董微微, 李珍珍, 张瑶瑶, 李超, 焦林郁, 化学学报2025, 83 (05), 479-487.)
[5] Tang J. H.; Zhou C. Y.; Wang C. M.; Acta Chim. Sinica 2025, 83, 557-562(in Chinese). (唐俊鸿, 周聪颖, 王成明, 化学学报2025, 83 (06), 557-562.)
[6] Liu, J.; Ou, J. H.; Li, Z. P.; Jiang, J. Y.; Liang, R. T.; Zhang, W. J.; Liu, K. J.; Han, Y.; Acta Chim. Sinica 2023, 81 (12), 1701-1707 (in Chinese). (刘健, 欧金花, 李泽平, 蒋婧怡, 梁荣涛, 张文杰, 刘开建, 韩瑜, 化学学报2023, 81 (12), 1701-1707.)
[7] Sample H. C.; Senge M. O.Eur. J. Org. Chem. 2021, 2021 (1), 7-42.
[8] Adam H. A.E.; Zhou, S.; Zeng, Q. Chem. Commun. 2025,61, 1934-1943.
[9] Zhu Z.; Jiang Y.; Xu L.; An Q.; Nga T. T.T.; Chen, J.; Fan, Y.; Liu, Q.; Dong, C. L.; Wang, S.Adv. Mater. 2025, 37 (5), 2409864.
[10] Li Z.; Qiu S.; Song Y.; Huang S.; Gao J.; Sun L.; Hou J. Sci. Bull.2022, 67 (19), 1971-1981.
[11] Zhang S.; Shang C.; Li C.; Lian D.; Wang S.; Hu X.; Ji Y.; Duan E. Chem Catal.2025, 5 (5),101290.
[12] Feng J.; Xi L.-L.; Lu C.-J.; Liu R.-R.Chem. Soc. Rev. 2024, 53 (19), 9560-9581.
[13] Chen J. Q.; Zhu G. G.; Wu H., Acta Chim. Sinica 2024, 82 (02), 190-212(in Chinese). (陈健强, 朱钢国, 吴劼. 化学学报2024, 82 (02), 190-212.)
[14] Rayadurgam J.; Sana S.; Sasikumar M.; Gu, Q. Org. Chem. Front.2021, 8 (2), 384-414.
[15] Pu X.; Zhang Y.; He X.; Zhang X.; Jiang L.; Cao R.; Kin Tse, M.; Qiu, L.Adv. Synth. Catal. 2023, 365 (8), 1152-1157.
[16] Zhang P.; Guo C.-Q.; Yao W.; Lu C.-J.; Li Y.; Paton R. S.; Liu R.-R.ACS Catal. 2023, 13 (11), 7680-7690.
[17] Das S.; Ehlers A. W.; Patra S.; de Bruin B.; Chattopadhyay, B. J. Am. Chem. Soc.2023, 145 (27), 14599-14607.
[18] Peterson P. O.; Joannou M. V.; Simmons E. M.; Wisniewski S. R.; Kim J.; Chirik P. J.ACS Catal. 2023, 13 (4), 2443-2448.
[19] Ludwig J. R.; Simmons E. M.; Wisniewski S. R.; Chirik P. J.Org. Lett. 2021, 23 (3), 625-630.
[20] Wang Z. C.; Xie P. P.; Xu Y.; Hong X.; Shi S. L.Angew. Chem. Int. Ed. 2021, 133 (29), 16213-16220.
[21] Li X.; Song G. Y.; Dong J. Y.; Xue D.Sci. Sin. Chim. 2024, 54 (10), 1897-1903(in Chinese). (李鑫, 宋戈洋, 董建洋, 薛东.中国科学:化学 2024, 54(10), 1897-1903.)
[22] Thönnißen V.; Westphäling J.; Atodiresei I. L.; Patureau F. W.Chem. Eur. J. 2024, 30 (16), e202304378.
[23] Ishida M.; Adachi R.; Kobayashi K.; Yamamoto Y.; Kawahara C.; Yamada T.; Aoyama H.; Kanomata K.; Akai S.; Lam P. Y. S.; et al. Chem. Commun.2024, 60 (6), 678-681.
[24] Yang S.; Zheng T.; Duan L.; Xue X.; Gu Z.Angew. Chem. Int. Ed. 2023, 62 (21), e202302749.
[25] Chen J.-J.; Zhang J.-Y.; Fang J.-H.; Du X.-Y.; Xia H.-D.; Cheng B.; Li N.; Yu Z.-L.; Bian J.-Q.; Wang F.-L.; et al. J. Am. Chem. Soc.2023, 145 (27), 14686-14696.
[26] Hammoud H.; Schmitt M.; Bihel F.; Antheaume C.; Bourguignon, J.-J. J. Org. Chem.2012, 77 (1), 417-423.
[27] Yang K.; Qiu Y.; Li Z.; Wang Z.; Jiang, S. J. Org. Chem.2011, 76 (9), 3151-3159.
[28] Wu F. T.; Li J.; Sun Y. J.; Zeng R.; Reng H.; Liu X. P.; Zhang C. H.; Yan F. M.; Wu L.; Cui Chun. N.Chem. J. Chinese U. 2022, 43 (03), 84-89
(in Chinese). (吴丰田; 李俊; 孙艺嘉; 曾蓉; 任涵; 刘秀萍; 张彩虹; 闫芳明; 吴玲; 崔春娜. 高等学校化学学报2022, 43 (03), 84-89.)
[29] Xu, L., Yang Z.; Zhang C.; Chen C.; Xu L.Chem. Commun. 2024,60, 10822-10837.
[30] Arora P.; Kumar P.; Tomar V.; Sillanpää M.; Joshi R. K.; Nemiwal M.Inorg. Chem. Commun. 2022, 145, 109982.
[31] Choudhury P.; Ghosh S.; Biswas K.; Basu B.Nanoscale 2024, 16 (24), 11592-11603.
[32] Meenakshy S.; Neetha M.; Anilkumar, G. Org. Biomol. Chem. 2024, 22 (10), 1961-1982.
[33] Mamaghani A. H.; Liu J.; Zhang Z.; Gao R.; Wu Y.; Li H.; Feng M.; Chen, Z. Adv. Energy Mater.2024, 14 (39), 2402278.
[34] Tang H.; Fan D.; Chen Y.; Han S.Green Chem. 2025, 27 (10), 2605-2628.
[35] Sahoo R.; Pramanik B.; Das M. C.Small 2025, 21 (11), 2500324.
[36] Li Z.-H.; Xue L.-P.; Wang L.; Zhang S.-T.; Zhao B.-T.Inorg. Chem. Commun. 2013, 27, 119-121.
[37] Li H.; Yang Y.; He C.; Zeng L.; Duan C.ACS Catal. 2019, 9 (1), 422-430.
[38] Rasaily S.; Sharma D.; Pradhan S.; Diyali N.; Chettri S.; Gurung B.; Tamang S.; Pariyar A.Inorg. Chem. 2022, 61 (35), 13685-13699.
[39] Kökçam-Demir, Ü.; Goldman, A.; Esrafili, L.; Gharib, M.; Morsali, A.; Weingart, O.; Janiak, C.Chem. Soc. Rev. 2020, 49 (9), 2751-2798.
[40] Xie Y.; Li Z.; Xu X.; Jiang H.; Chen K.; Ou J.; Liu K.; Zhou Y.; Luo K.Molecules 2024, 29 (20), 4909.
[41] Ou J.; He S.; Wang W.; Tan H.; Liu, K. Org. Chem. Front.2021, 8 (12), 3102-3109.
[42] Ou J.; Liang R.; Zhang W.; Liu J.; Xia G.; Xie Y.; Liu K.; Yan W.; Zhang Q.; Zhou Y.Sol. Energy 2024, 272, 112478.
[43] Ou J.; Yu S.; Xie Y.; Jiang H.; Lyu C.; Xia G.; Chen K.; Liu K.; Liu J.J. Colloid Interface Sci. 2025, 700, 138325.
[44] Ou J.; Yu S.; Liu D.; Jiang H.; Lyu C.; Chen K.; Li J.; Yu Z.; Liu K.; Liu J.Green Chem. 2025, 27 (38), 11882-11891.
[45] Wang Y.; Shi Y.; Xiong D.; Li Z.; Wang H.; Xuan X.; Wang J.Chem. Eng. J. 2023, 474, 145307.
[46] Chang G. G.; Ma X. C.; Zhang Y. X.; Wang L. Y.; Tian G.; Liu J. W.; Wu J.; Hu Z. Y.; Yang X. Y.; Chen B.Adv. Mater. 2019, 31 (52), 1904969.
[47] Gou M.; Guo R.; Cao H.; Zhu W.; Liu F.; Wei Z.Chem. Eng. J. 2022, 438, 135651.
[48] Zhang T.; Sun Z.; Li S.; Wang B.; Liu Y.; Zhang R.; Zhao Z.Nat. Commun. 2022, 13 (1), 6996.
[49] Shi H.; Liang Y.; Hou J.; Wang H.; Jia Z.; Wu J.; Song F.; Yang H.; Guo X.Angew. Chem. Int. Ed. 2024, 63 (31), e202404884.
[50] Mondal K.; Mukhopadhyay N.; Patra S.; Roy T.; Das P.ACS Catal. 2023, 13 (18), 11977-11995.
[51] Rahmatzadeh S.; Sardarian A. R.; Rafipour D.Appl. Organomet. Chem. 2024, 38 (9), e7630.
[52] Hegde S.; Surendran S.; Vijayan A.; Nizam A.Catal. Today 2025, 449, 115180.
[53] Mansano Willig, J. C.; Granetto, G.; Reginato, D.; Dutra, F. R.; Poruczinski, É. F.; de Oliveira, I. M.; Stefani, H. A.; de Campos, S. D.; de Campos, É. A.; Manarin, F.; et al.RSC Advances 2020, 10 (6), 3407-3415.
Outlines

/