Article

Pyridine-Based Bipolar Host Materials for Phosphorescent OLEDs

  • Xu Dongqing ,
  • Dong Haishan ,
  • Shi Luyan ,
  • Zhang Ting
Expand
  • aCollege of Biomedical and Health Institution, Anhui Science and Technology University, Fengyang, Anhui 233100, China
    bSchool of Chemistry and Material Engineering, Anhui Science and Technology University, Bengbu, Anhui 233030, China

Received date: 2025-08-17

  Online published: 2025-11-11

Supported by

Key Research Funds of Anhui Province (2023AH051883), the Student's Platform for Innovation and Entrepre neurship Training Program of Anhui Province (S202410879200) and Shanghai Qing Zhen Test Technology Co., Ltd., China (880772).

Abstract

Achieving an excellent device performance with slow roll-off efficiency is still a crucial requirement for organic light-emitting diodes (OLED) in displays and white lighting applications. Therefore, we selected carbazole as the hole transporting group (p-type unit), phenylene as the linkage unit and pyridine as the electron transporting unit (n-type unit), to construct two bipolar host materials o-2CzPy and m-2CzPy, by varying the ortho- and meta-linking modes.Their chemical structures were confirmed by mass spectrometry (TOF-MS-EI), 1H and 13C NMR spectroscopy, and elemental analysis. These two materials have good thermal stability with the thermal decomposition temperatures of than 360 ℃ and efficient hole- and electron-transporting properties. FIrpic and Ir(ppy)3 based blue and green PhOLEDs incorporating o-2CzPy and m-2CzPy as hosts show pretty color purity, good high efficiencies and slow efficiency roll-off. Among them, the maximum current efficiency of 45.16 cd A-1 and external quantum efficiency of 24.44% were achieved for o-2CzPy based blue device, which are close to the best values for FIrpic-based blue PhOLEDs with single bipolar host reported in recent literatures. Furthermore, the o-2CzPy based green device achieved the high efficiencies of 28.58% and 96.91 cd A-1, and stable emission color of ΔCIEy≤0.0001. Even at the practical brightness of 1000 cd m-2 and 6000 cd m-2, the external quantum efficiencies of o-2CzPy hosted green device still keep as high as 28.03% and 24.70%, with the slight efficiency reduction of 1.9% and 13.6%. These excellent results indicate that these bipolar host materials may find practical applications in highly efficient and stable OLED displays.

Cite this article

Xu Dongqing , Dong Haishan , Shi Luyan , Zhang Ting . Pyridine-Based Bipolar Host Materials for Phosphorescent OLEDs[J]. Acta Chimica Sinica, 0 : 25080281 . DOI: 10.6023/A25080281

References

[1] Baldo M. A.; O’brien, D. F,; You, Y. J.; Shoustikov A.; Forrest S. R. Nature1998, 395, 151.
[2] Quan X.; Zhang J.; Fung Y.-J.; Keuang M.; Yang, X. J. Mater. Chem. C2019, 7, 1370.
[3] Wang J.; Meng F.; Bai H.; Zhang Z.; Li J. Dyes Pigm.2024, 223, 111920.
[4] Kim Y. S.; Lim J.; Lee J.Y.; Lee Y.; Choo, C. Adv. Opt. Mater.2022, 10, 2101435.
[5] Chen D.; He W.-Z.; Liao H.-S.; Hu Y.-X.; Xie D.-D.; Wang, B.-Y., Chi H.-J.; Lv Y.-L.; Zhu X.; Li X. Org. Electron.2023, 113, 106715.
[6] Zhang T.; Zhu M.; Li J. Y.; Zhang Y. Y.; Wang, X. C. Dyes Pigm.2021, 192, 109426.
[7] Lin M. S.; Yang S. J.; Chang H. W.; Huang Y. H.; Tsai Y. T.; Wu C. C.; Chou S. H.; Mondal E.; Wong, K. T. J. Mater. Chem.2012, 22: 16114.
[8] Gu Y.; Zhu L.-P.; Jin Y.; Li Y.-F.; Gong S.-L.; Ma D.-G.; Qin J.-G.; Yang, C. L. Sci. Sin. Chim.2013, 43, 472 (in Chinese).
(顾宇, 朱丽萍, 金勇, 李逸帆, 龚少龙, 马东阁, 秦金贵, 杨楚罗, 中国科学: 化学, 2013, 43, 472.)
[9] Liu X. Y.; Liang F.; Yuan Y.; Cui L. S.; Jiang Z. Q.; Liao, L. S. Chem. Commun.2016, 52, 8149.
[10] Sheng R.; Li A.; Zhang F.; Song J.; Duan Y.; Chen, P. Adv. Optical Mater.2020, 8, 1901247.
[11] Cao Q.; Zhang W.; Xu H.; Wang J.; Pei M.; Qian Y.; Zhou, T. Chem. Eng. J.2023, 466, 143088.
[12] Wang F.; Liu D.; Li J.; Ma, M. Adv. Funct. Mater.2018, 28, 1803193.
[13] Gong S.; Zhao Y.; Yang C.; Zhong C.; Qin J.; Ma, D. J. Phys. Chem. C2010, 114, 5193.
[14] Su, S.-J; Sasabe H.; Takeda T.; Kido, J. J. Chem. Mater.2008, 20, 1691.
[15] Hudson Z. M.; Wang Z. B.; Helander M. G.; Lu Z. H.; Wang, S. N. Adv. Mater.2012, 24, 2922.
[16] Hu S.; Zeng J.; Zhu X.; Guo J.; Chen S.; Zhao Z.; Tang B. ACS Appl. Mater. Interfaces2019, 11, 27134.
[17] Chen C. H.; Huang W. S.; Lai M. Y.; Tsao W. C.; Lin J. T.; Wu Y. H.; Ke T. H.; Wu, C. C. Adv. Funct. Mater.2009, 19, 2661.
[18] Lin D.-Y.; Song S.-C.; Chen Z.-Y.; Guo P.-G.; Chen J.-H.; Shi H.-H.; Mai Y.-L.; Song, H.-C. Chin. J. Org. Chem.2018, 38, 103 (in Chinese).
(林丹燕, 宋森川, 陈智勇, 郭鹏然, 陈江韩, 史华红, 麦裕良, 宋化灿, 有机化学, 2018, 38, 103.)
[19] Patil V. V.; Hong W. P.; Lee, J. Y. Adv. Energy Mater.2025, 15, 2400258.
[20] Li W.; Li J.; Liu D.; Wang F.; Zhang, S. J. Mater. Chem. C2015, 3, 12529.
[21] Ge F.-J.; Zhang K.-Z.; Cao, Q.-P; Xu H.; Zhou T.; Zhang W.-H.; Ban X.-X.; Zhang X.-B.; Li N.; Zhu, P. Acta Chim. Sinica2023, 81, 1157(in Chinese). (葛凤洁, 张开志, 曹清鹏, 徐慧, 周涛, 张文浩, 班鑫鑫, 张晓波, 李娜, 朱鹏, 化学学报, 2023, 81, 1157.)
[22] Zhang Z.-Y.; Li W.-J.; Ye K.-Q.; Zhang, H.-Y. Acta Chim. Sinica2016, 74, 179 (in Chinese).
(张振宇, 李婉君, 叶开其, 张红雨, 化学学报, 2016, 74, 179.)
[23] Park C. Y.; Park S. H.; Kwon N. Y.; Park J. Y.; Kang M. J.; Kwak H.; Son J. H.; Woo H. Y.; Hong, C. S;. Cho, M. J.; Choi, D. H. Appl. Mater. Interfaces2024, 16, 45242.
[24] Ari D.; Yang Y.-J.; Quinton C.; Jiang Z.-Q.; Zhou D.-Y.; Poriel, C. Angew. Chem. Int. Ed.2024, 63, e202403066.
[25] Kim M.; Lee, J. Y. Adv. Funct. Mater.,2014, 24: 4164.
[26] Li W.; Li J.; Liu D.; Li D.; Dan Z. Chem. Sci.2016, 7, 6706.
[27] Kim D. J.; Lee S.; Lee Y. H.; Jang, H., Ahn K.-H.; Han, W.-S. J. Mater. Chem. C2021, 9, 12102.
[28] Wang J.-M.; Lee T.-C.; Chung C.-C.; Chen W.-Y.; Wu S.-Y.; Lin Y.-D.; Chang Y. J.; Lu C.-W.; Chang, C.-H. Chem. Eng. J.2023, 472, 145023.
Outlines

/