Achieving an excellent device performance with slow roll-off efficiency is still a crucial requirement for organic light-emitting diodes (OLED) in displays and white lighting applications. Therefore, we selected carbazole as the hole transporting group (p-type unit), phenylene as the linkage unit and pyridine as the electron transporting unit (n-type unit), to construct two bipolar host materials o-2CzPy and m-2CzPy, by varying the ortho- and meta-linking modes.Their chemical structures were confirmed by mass spectrometry (TOF-MS-EI), 1H and 13C NMR spectroscopy, and elemental analysis. These two materials have good thermal stability with the thermal decomposition temperatures of than 360 ℃ and efficient hole- and electron-transporting properties. FIrpic and Ir(ppy)3 based blue and green PhOLEDs incorporating o-2CzPy and m-2CzPy as hosts show pretty color purity, good high efficiencies and slow efficiency roll-off. Among them, the maximum current efficiency of 45.16 cd A-1 and external quantum efficiency of 24.44% were achieved for o-2CzPy based blue device, which are close to the best values for FIrpic-based blue PhOLEDs with single bipolar host reported in recent literatures. Furthermore, the o-2CzPy based green device achieved the high efficiencies of 28.58% and 96.91 cd A-1, and stable emission color of ΔCIEy≤0.0001. Even at the practical brightness of 1000 cd m-2 and 6000 cd m-2, the external quantum efficiencies of o-2CzPy hosted green device still keep as high as 28.03% and 24.70%, with the slight efficiency reduction of 1.9% and 13.6%. These excellent results indicate that these bipolar host materials may find practical applications in highly efficient and stable OLED displays.
[1] Baldo M. A.; O’brien, D. F,; You, Y. J.; Shoustikov A.; Forrest S. R. Nature1998, 395, 151.
[2] Quan X.; Zhang J.; Fung Y.-J.; Keuang M.; Yang, X. J. Mater. Chem. C2019, 7, 1370.
[3] Wang J.; Meng F.; Bai H.; Zhang Z.; Li J. Dyes Pigm.2024, 223, 111920.
[4] Kim Y. S.; Lim J.; Lee J.Y.; Lee Y.; Choo, C. Adv. Opt. Mater.2022, 10, 2101435.
[5] Chen D.; He W.-Z.; Liao H.-S.; Hu Y.-X.; Xie D.-D.; Wang, B.-Y., Chi H.-J.; Lv Y.-L.; Zhu X.; Li X. Org. Electron.2023, 113, 106715.
[6] Zhang T.; Zhu M.; Li J. Y.; Zhang Y. Y.; Wang, X. C. Dyes Pigm.2021, 192, 109426.
[7] Lin M. S.; Yang S. J.; Chang H. W.; Huang Y. H.; Tsai Y. T.; Wu C. C.; Chou S. H.; Mondal E.; Wong, K. T. J. Mater. Chem.2012, 22: 16114.
[8] Gu Y.; Zhu L.-P.; Jin Y.; Li Y.-F.; Gong S.-L.; Ma D.-G.; Qin J.-G.; Yang, C. L. Sci. Sin. Chim.2013, 43, 472 (in Chinese).
(顾宇, 朱丽萍, 金勇, 李逸帆, 龚少龙, 马东阁, 秦金贵, 杨楚罗, 中国科学: 化学, 2013, 43, 472.)
[9] Liu X. Y.; Liang F.; Yuan Y.; Cui L. S.; Jiang Z. Q.; Liao, L. S. Chem. Commun.2016, 52, 8149.
[10] Sheng R.; Li A.; Zhang F.; Song J.; Duan Y.; Chen, P. Adv. Optical Mater.2020, 8, 1901247.
[11] Cao Q.; Zhang W.; Xu H.; Wang J.; Pei M.; Qian Y.; Zhou, T. Chem. Eng. J.2023, 466, 143088.
[12] Wang F.; Liu D.; Li J.; Ma, M. Adv. Funct. Mater.2018, 28, 1803193.
[13] Gong S.; Zhao Y.; Yang C.; Zhong C.; Qin J.; Ma, D. J. Phys. Chem. C2010, 114, 5193.
[14] Su, S.-J; Sasabe H.; Takeda T.; Kido, J. J. Chem. Mater.2008, 20, 1691.
[15] Hudson Z. M.; Wang Z. B.; Helander M. G.; Lu Z. H.; Wang, S. N. Adv. Mater.2012, 24, 2922.
[16] Hu S.; Zeng J.; Zhu X.; Guo J.; Chen S.; Zhao Z.; Tang B. ACS Appl. Mater. Interfaces2019, 11, 27134.
[17] Chen C. H.; Huang W. S.; Lai M. Y.; Tsao W. C.; Lin J. T.; Wu Y. H.; Ke T. H.; Wu, C. C. Adv. Funct. Mater.2009, 19, 2661.
[18] Lin D.-Y.; Song S.-C.; Chen Z.-Y.; Guo P.-G.; Chen J.-H.; Shi H.-H.; Mai Y.-L.; Song, H.-C. Chin. J. Org. Chem.2018, 38, 103 (in Chinese).
(林丹燕, 宋森川, 陈智勇, 郭鹏然, 陈江韩, 史华红, 麦裕良, 宋化灿, 有机化学, 2018, 38, 103.)
[19] Patil V. V.; Hong W. P.; Lee, J. Y. Adv. Energy Mater.2025, 15, 2400258.
[20] Li W.; Li J.; Liu D.; Wang F.; Zhang, S. J. Mater. Chem. C2015, 3, 12529.
[21] Ge F.-J.; Zhang K.-Z.; Cao, Q.-P; Xu H.; Zhou T.; Zhang W.-H.; Ban X.-X.; Zhang X.-B.; Li N.; Zhu, P. Acta Chim. Sinica2023, 81, 1157(in Chinese). (葛凤洁, 张开志, 曹清鹏, 徐慧, 周涛, 张文浩, 班鑫鑫, 张晓波, 李娜, 朱鹏, 化学学报, 2023, 81, 1157.)
[22] Zhang Z.-Y.; Li W.-J.; Ye K.-Q.; Zhang, H.-Y. Acta Chim. Sinica2016, 74, 179 (in Chinese).
(张振宇, 李婉君, 叶开其, 张红雨, 化学学报, 2016, 74, 179.)
[23] Park C. Y.; Park S. H.; Kwon N. Y.; Park J. Y.; Kang M. J.; Kwak H.; Son J. H.; Woo H. Y.; Hong, C. S;. Cho, M. J.; Choi, D. H. Appl. Mater. Interfaces2024, 16, 45242.
[24] Ari D.; Yang Y.-J.; Quinton C.; Jiang Z.-Q.; Zhou D.-Y.; Poriel, C. Angew. Chem. Int. Ed.2024, 63, e202403066.
[25] Kim M.; Lee, J. Y. Adv. Funct. Mater.,2014, 24: 4164.
[26] Li W.; Li J.; Liu D.; Li D.; Dan Z. Chem. Sci.2016, 7, 6706.
[27] Kim D. J.; Lee S.; Lee Y. H.; Jang, H., Ahn K.-H.; Han, W.-S. J. Mater. Chem. C2021, 9, 12102.
[28] Wang J.-M.; Lee T.-C.; Chung C.-C.; Chen W.-Y.; Wu S.-Y.; Lin Y.-D.; Chang Y. J.; Lu C.-W.; Chang, C.-H. Chem. Eng. J.2023, 472, 145023.