Preparation of High-Strength Fluorinated Norbornene /PDMS Dual-Network Organogel and Its Anti-Icing Performance

  • Wen-wen Fan ,
  • Guang-zeng Luo ,
  • Kai Gong ,
  • Zhu-bai Xie ,
  • Chun-jie Xie ,
  • Lan Lei ,
  • Hui Li
Expand
  • School of Chemistry and Chemical Engineering, University of Jinan, Shandong Provincial Key Laboratory of Special Chemicals for Extreme Environments Jinan, 250022, China

Received date: 2025-10-22

  Online published: 2025-12-03

Supported by

Project supported by the Natural Science Foundation of Shandong Province (ZR2022QB170); Research Project for Newly Introduced Talents of University of Jinan (XBS2418).

Abstract

Ace-resistant materials have long been plagued by critical challenges in practical applications, including insufficient durability and compromised stability under complex harsh conditions (e.g., high humidity, ultra-low temperature) . Therefore, developing advanced materials that synergistically integrate high mechanical strength, superior durability, and low ice adhesion strength remains of paramount significance. Herein, we rationally designed target materials by leveraging the complementary merits of fluorinated norbornene polymers (low surface energy, high mechanical strength) and PDMS (low elastic modulus, low surface energy). Specifically, the first network (fluorinated norbornene polymer) was constructed via ring-opening metathesis polymerization (ROMP) using Grubbs 2nd generation catalyst, with norbornenyl trifluoroethyl ester (NTF) and norbornenyl dodecafluoroheptyl ester (NDF) as comonomers, and di-norbornenyl ethylene glycol ester (NEG) as the cross-linker. The second network was fabricated through hydrosilylation reaction, employing Sylgard 184 Components A and B as monomer precursors and dimethyl silicone oil as a functional additive. Through the sequential polymerization strategy, a series of fluorinated norbornene/PDMS double-network organogels (NTDG/PDMS) with tunable dimethyl silicone oil contents were successfully synthesized. The physicochemical and functional properties of the as-prepared double-network organogels were systematically characterized. Experimental results revealed that the dimethyl silicone oil content exerted a prominent regulatory effect on the tensile strength and ice shear strength (τ₁ce) of the materials . As the silicone oil content increased from 0 to 80%, the tensile strength of NTDG/PDMS gels retained above 1.33 MPa, while the ice shear strength underwent a significant reduction from 211.59 kPa to 9.96 kPa (well below the 100 kPa threshold for icephobic materials ), accompanied by a gradual extension of icing delay time to 428 s. Mechanical durability assessment demonstrated that after 60 friction cycles, the ice shear strength of NTDG/PDMS-4 only increased from 9.96 kPa to 19.13 kPa (a marginal increment of 9.17 kPa) with minimal variation, manifesting exceptional ice resistance and structural robustness. Collectively, this double-network organogel integrates high mechanical strength, outstanding ice-resistant performance, and favorable friction resistance, thereby holding broad application prospects in the field of ice protection.

Cite this article

Wen-wen Fan , Guang-zeng Luo , Kai Gong , Zhu-bai Xie , Chun-jie Xie , Lan Lei , Hui Li . Preparation of High-Strength Fluorinated Norbornene /PDMS Dual-Network Organogel and Its Anti-Icing Performance[J]. Acta Chimica Sinica, 0 : 0 . DOI: 10.6023/A25100351

References

[1] Cheng S.; Guo P.; Wang X.; Che P.; Han X.; Jin R.; Heng L.; Jiang L. Chem. Eng. J. 2022, 431, 133411.
[2] Hou Y.; Choy K. L. Prog. Org. Coat. 2022, 163, 106637.
[3] Zhu G.; Tian Y.; Wu J.; Yang G.; Hua Z. ACS Appl. Polym.Mater. 2022,4, 7626-7633.
[4] Tian S.; Li R.; Liu X.; Wang J.; Yu J.; Xu S.; Tian Y.; Yang J.; Zhang L. Research 2023, 6, 0140.
[5] Qin L.; Wu,Y.; Ma Z. H.; Li H. X.; Lu S. L.; Wang Z.; Liu,J.; Dong W. D.; Zhang T. ACS Appl. Polym.Mater. 2023, 5, 6278-6287.
[6] Xie W.; Zhang Y.; Wang L.; Li J.; Ding T.; Liu K.; Jiang L. ACS Nano 2023, 17, 14889-14901.
[7] Liu K.; Wang Y.; Li Z.; Zhang S.; Wang H.; Chen B. Chem. Eng. J. 2024, 479, 147653.
[8] Ma G. J.; Zheng H. K.;Chang S. N.;Wang S. S.Acta Chim. Sinica 2019, 77, 269-277(in Chinese). (马国佳, 郑海坤, 常士楠, 王硕硕, 化学学报, 2019, 77, 269-277.)
[9] Xing Q. S.; Chen X. L.; Tao J. Y.; Chen A. F.; Zhang Y. M.; Lei C. H. Acta. Polym. Sin. 2023, 54, 1123-1132(in Chinese). (邢清松, 陈旭龙, 陶嘉宇, 陈安伏, 张艳梅, 雷彩红, 高分子学报, 2023, 54(8): 1123-1132.)
[10] Li Y.; Lu Y. M.; Wang P. F.; Cao Y. Z.; Dai C. A. Prog. Chem. 2021, 33, 2362-2377(in Chinese). (李玥, 卢亚妹, 王鹏飞, 曹莹泽, 戴春爱, 化学进展, 2021, 33, 2362-2377.)
[11] Tran H. H.; Lee D.; Riassetto D. Rep. Prog. Phys. 2023, 86, 066601.
[12] Zhang P. F.; Li Y. F.; Li X. B.; Xu W. H.; Dong Z. C.; Zhang L.; Hou Y. P. Nat. Commun. 2023, 14, 723.
[13] Golovin K.; Dhyani A.; Thouless M. D.; Tuteja A. Science 2019, 364, 371.
[14] Shi B.; Wen J. M.; Liu R. D.; Wu H. J.; Yi X. J.Air Force Eng. Univ. (Nat. Sci. Ed.). 2025,26, 10-17(in Chinese). (师宾, 温佳明, 刘蕊迪, 吴宏景, 易贤, 空军工程大学学报, 2025, 26, 10-17.)
[15] Hao Y.; Li J.; Wang C.; Jiang W.; Zeng X.; Yoo C. G.; Yang G.; Ji X.; L, G. ACS Appl. Polym. Mater. 2024, 6, 141-153.
[16] Rao Q.; Zhang J.; Zhan X.; Chen F.; Zhang Q. J. Mater. Chem. A. 2020, 8, 2481-2489.
[17] Ru Y.; Fang R.; Gu Z.; Jiang L.; Liu M. Angew. Chem. Int. Edit. 2020, 59, 11876-11880.
[18] Zhuo Y.; Chen J.; Xiao S.; Li T.; Wang F.; He J.; Zhang Z. Mater.Horiz. 2021, 8, 3266-3280.
[19] Zhang Y.; Li S.; Wang J.; Chen H. Macromolecules 2023, 56, 4500-4512.
[20] Smith J. A.; Johnson B. C.; Lee K. Adv. Funct. Mater. 2023, 33, 2301234.
[21] Luo G. Z.; Gao Z. L.; Liu S.; Chen X.; Yang H.; Wu J. Langmuir 2024, 40, 11785-11794.
[22] Gong K.; Liu X. X.; Zhang H.; Cheng X.; Zhou C. J.; Wang Y.; Li M. Prog. Org. Coat. 2025, 204, 109274.
[23] Jiang Y. G.Master's Thesis, Dalian Maritime University, Dalian, 2021(in Chinese). (姜钰国. 硕士论文. 大连海事大学. 大连. 2021.)
[24] Song C. Chem. Ind. Eng.Prog. 2022, 41, 5890-5898(in Chinese). (宋超. 化工进展, 2022, 41, 5890-5898.)
[25] Du Y. J.; Wang Y. S.; Zou Z. N. Bull. Geol. Sci.Technol. 2024, 43, 226-234(in Chinese). (杜勇江, 王运生, 邹子南. 地质科技通报, 2024, 43, 226-234.)
[26] Zhang Z.; Chaudhuri K.; Kaefer F.; Malanoski AP.; Page KA. ACS Appl. Mater. Interfaces 2024, 16, 19594-19604.
[27] Cai Z.; Badr R. G.M.; Hauer, L. Soft Matter 2024, 20: 7300.
[28] Zhuo Y. Z.; Chen J. H.; Xiao S. B.; He J. Y.; Zhang Z.W.Materials Horizons. 2021, 8, 3266-3280.
[29] Zhang M.; Li H.; Wang L.; Liu R.; Chen A. F.; Lei C. H. Acta. Polym. Sin. 2024, 55, 456-465(in Chinese).(张明, 李华, 王磊, 刘蕊, 陈安伏, 雷彩红. 高分子学报,2024, 55, 456-465.)
[30] Chen Y.; Li S. H.; Li Y. F.[J]. Mech. Eng. 2022, 58(12): 64-74(in Chinese). (陈源, 李淑慧, 李永丰. 机械工程学报, 2022, 58, 64-74.)
[31] Li P.; Liu Z.; H. Yin, Y. High. Volt. Eng. 2018, 44, 2215-2222(in Chinese). (李鹏, 刘泽洪, 殷禹. 高电压技术, 2018, 44, 2215-2222.)
[32] Fang X. L.; Zheng H. J.Powder Metall. Technol. 2020, 38, 313-318(in Chinese). (方晓凌, 郑海军. 粉末冶金技术, 2020, 38, 313-318.)
[33] Tuteja A.; Dhyani A.; Golovin K.; Lee D. W.; Mabry J. M. Chem. Eng. J. 2025, 488, 135678.
[34] He Z. W.; Xiao S. B.; Gao H. J. Soft Matter 2017, 13, 6562-6568.
[35] Shen Y. Z.; Wu X. H.; Tao J.; Zhu C. L.; Lai Y. K.; Chen Z. Prog. Mater. Sci. 2019, 103, 509-557.
Outlines

/