Review

Recent Advances in Electrochemical Dehydrogenative Coupling for Heteroatom-Heteroatom Formation

  • Chang Hong ,
  • Zhuang Shiyi ,
  • Jin Weiwei
Expand
  • College of Life Sciences, China Jiliang University, Hangzhou 310018
*E-mail: wwjin0722@cjlu.edn.cn.

Received date: 2025-12-10

  Online published: 2026-01-26

Supported by

National Natural Science Foundation of China (No. 22161044) and the Scientific Research Foundation of China Jiliang University (No. 01101-231067)

Abstract

Compounds containing heteroatom-heteroatom bonds (X-X bonds) hold extensive application value in fields such as natural products, biotechnology, and materials science. Given the unique role of X-X bonds in regulating molecular bioactivity, the development of efficient strategies for constructing X-X bonds have emerged as an active research direction in organic synthesis. Traditional X-X bond formation predominantly relies on enzyme or metal catalysts to drive reactions, which often resulting in high costs, cumbersome procedures, and environmental and safety concerns. Moreover, the excessive use of certain toxic reagents significantly restricts their development and application. In such cases, organic electrosynthesis has attracted considerable attention. Compared to traditional approaches, the development of electrosynthesis methods has reduced the use of transition-metal catalysts, thereby significantly improving reaction efficiency and environmental sustainability. With increasing attention and research on the construction methods of heteroatom-heteroatom bonds, the reports on the electrosynthesis of various organic compounds featuring different heteroatoms have become increasingly frequent. In recent years, organic electrosynthesis has gained increasing attention as a green synthetic method, owing to its advantages such as environmental friendliness, high atom economy, and alignment with sustainable development concepts. In organic electrosynthesis, "electrons " serve as redox agents, enabling precise reaction control through modulation of current and voltage. This approach avoids excessive use of external oxidants while simplifying operational procedures, representing a green and efficient strategy for constructing heteroatom-heteroatom bonds. This article focuses on the electrochemical cross-dehydrogenative coupling strategy and takes several common heteroatoms as examples to systematically review a series of electrochemical methods for constructing heteroatom-heteroatom bonds. Given that previous reviews have systematically reported electrochemical methods for constructing N-S bonds, this paper primarily reviews electrochemical approaches for constructing other heteroatom-heteroatom bonds and focuses on introducing the research progress of electrochemical dehydrogenation coupling reactions in constructing X-X bonds. In addition to outlining the relevant reaction mechanisms, we further discuss current challenges and future prospects in this field.

Cite this article

Chang Hong , Zhuang Shiyi , Jin Weiwei . Recent Advances in Electrochemical Dehydrogenative Coupling for Heteroatom-Heteroatom Formation[J]. Acta Chimica Sinica, 0 : 260126 . DOI: 10.6023/A25120403

References

[1] Li M.; Hong J.; Xiao W.; Yang Y.; Qiu D.; Mo F. ChemSusChem2020, 13, 1661.
[2] Duan C.; Zhang J.; Xiang J.; Yang X.; Gao, X. Acta Chim. Sinica2022, 80, 29 (in Chinese).
(段超, 张建伟, 向焌钧, 杨笑迪, 高希珂, 化学学报, 2022, 80, 29.)
[3] Varala R.; Kamsali M. M.A.; Bollikolla, H. B.; Mahurkar, S. S.; Hussein, M.; Alam, M. M.Chem. Biodivers. 2025, e01527.
[4] Du Z.; Qi Q.; Gao W.; Ma L.; Liu Z.; Wang R.; Chen J. Chem. Rec.2022, 22, e202100178.
[5] Dong K.; Liu Q.; Wu, L. Z. Acta Chim. Sinica2020, 78, 299 (in Chinese).
(董奎, 刘强, 吴骊珠, 化学学报, 2020, 78, 299.)
[6] Waldman A. J.; Ng T. L.; Wang P.; Balskus, E. P. Chem. Rev.2017, 117, 5784.
[7] Han Y.; Cui, X. Chin. J. Org. Chem.2023, 43, 1201 (in Chinese).
(韩宇轩, 崔秀灵, 有机化学, 2023, 43, 1201.)
[8] Kingston C.; Palkowitz M. D.; Takahira Y.; Vantourout J. C.; Peters B. K.; Kawamata Y.; Baran, P. S. Acc. Chem. Res.2019, 53, 72.
[9] Reziguli Y.; Kadierya A.; Luo S.; Abulikemu, A. R. Acta Chim. Sinica2024, 82, 843 (in Chinese).
(热孜古丽•玉努斯, 卡迪尔亚•阿布都外力, 罗时玮, 阿布都热西提•阿布力克木, 化学学报, 2024, 82, 843.)
[10] Wang Z.; Ma C.; Fang P.; Xu H.; Mei, T. Acta Chim. Sinica2022, 80, 1115 (in Chinese).
(王振华, 马聪, 方萍, 徐海超, 梅天胜, 化学学报, 2022, 80, 1115.)
[11] Faraday, M. Ann. Phys. 1834, 109, 301.
[12] Yang Z.; Zhang J.; Hu L.; Li L.; Liu K.; Yang T.; Zhou, C. J. Org. Chem.2020, 85, 3358.
[13] Tang S.; Liu Y.; Lei A. Chem2018, 4, 27.
[14] Robertson J. C.; Coote M. L.; Bissember, A. C. Nat. Revs. Chem.2019, 3, 290.
[15] Wang Y.; Qian P.; Su J. H.; Li Y.; Bi M.; Zha Z.; Wang Z. Green Chem.2017, 19, 4769.
[16] Deng L.; Wang Y.; Mei H.; Pan Y.; Han, J. J. Org. Chem.2019, 84, 949.
[17] Nicewicz D.; Roth H.; Romero N. Synlett2015, 27, 714.
[18] Ye Z.; Zhang X.; Ma W.; Zhang F. Green Chem.2023, 25, 2524.
[19] Biremond T.; Riomet M.; Jubault P.; Poisson T. Chem. Rec.2023, 23, e202300172.
[20] Taniguchi, T. Chem. Soc. Rev. 2021, 50, 8995.
[21] Qi J.; Zhang F.; Jin J.; Zhao Q.; Li B.; Liu L.; Wang, Y. Angew. Chem. Int. Ed.2020, 59, 12876.
[22] Poater J.; Solà M.; Viñas C.; Teixidor, F. Angew. Chem. Int. Ed.2014, 53, 12191.
[23] Mukherjee S.; Thilagar P. Chem. Commun.2016, 52, 1070.
[24] Núñez R.; Tarrés M.; Ferrer-Ugalde A.; de Biani F. F.; Teixidor F. Chem. Rev.2016, 116, 14307.
[25] Li X.; Yan H.; Zhao, Q. Chem. Eur. J.2015, 22, 1888.
[26] Fisher S. P.; Tomich A. W.; Lovera S. O.; Kleinsasser J. F.; Guo J.; Asay M. J.; Nelson H. M.; Lavallo V. Chem. Rev.2019, 119, 8262.
[27] Armstrong A. F.; Valliant J. F.Dalton Trans. 2007, 4240.
[28] Ge Y.; Qiu Z.; Xie, Z. Acta Chim. Sinica2022, 80, 432 (in Chinese).
(葛懿修, 邱早早, 谢作伟, 化学学报, 2022, 80, 432.)
[29] Yang L.; Bongsuiru Jei B.; Scheremetjew A.; Kuniyil R.; Ackermann, L. Angew. Chem. Int. Ed.2021, 60, 1482.
[30] Chen M.; Zhao D.; Xu J.; Li C.; Lu C.; Yan, H. Angew. Chem. Int. Ed.2021, 60, 7838.
[31] Rosen B. R.; Werner E. W.; O’Brien A. G.; Baran, P. S. J. Am. Chem. Soc.2014, 136, 5571.
[32] Gieshoff T.; Schollmeyer D.; Waldvogel, S. R. Angew. Chem. Int. Ed.2016, 55, 9437.
[33] Kehl A.; Gieshoff T.; Schollmeyer D.; Waldvogel, S. R. Chem. Eur. J.2018, 24, 590.
[34] Ye Z.; Wang F.; Li Y.; Zhang F. Green Chem.2018, 20, 5271.
[35] Xu P.; Xu H. ChemElectroChem.2019, 6, 4177.
[36] Li Y.; Ye Z.; Chen N.; Chen Z.; Zhang F. Green Chem.2019, 21, 4035.
[37] Feng E.; Hou Z.; Xu, H. Chin. J. Org. Chem.2019, 39, 1424 (in Chinese).
(冯恩祺, 侯中伟, 徐海超, 有机化学, 2019, 39, 1424.)
[38] Lv S.; Han X.; Wang J.; Zhou M.; Wu Y.; Ma L.; Niu L.; Gao W.; Zhou J.; Hu W.; Cui Y.; Chen, J. Angew. Chem. Int. Ed.2020, 59, 11583.
[39] Zhao J.; Ding L.; Wang P.; Liu Y.; Huang M.; Zhou X.; Lu, M. Adv. Synth. Catal.2020, 362, 5036.
[40] Wang F.; Gerken J. B.; Bates D. M.; Kim Y. J.; Stahl, S. S. J. Am. Chem. Soc.2020, 142, 12349.
[41] Wang Y.; You S.; Ruan M.; Wang F.; Ma C.; Lu C.; Yang G.; Chen Z.; Gao, M. Eur. J. Org. Chem.2021, 2021, 3289.
[42] Titenkova K.; Shuvaev A. D.; Teslenko F. E.; Zhilin E. S.; Fershtat, L. L. Green Chem.2023, 25, 6686.
[43] Gao A.; Chen K.; Ma F.; Li A.; Li, H. Eur J Org Chem2024, 27, e202400854.
[44] Li, S Y.; An Y.; Wang, L L.; Li X.; Tan Y.; Wen B.; Li, T S.; Chen, X, Q. Asian J. Org. Chem.2026, 15, e70271.
[45] Tang W.; Zhang X. Chem. Rev.2003, 103, 3029.
[46] Quin L. D.A Guide to Organophosphorus Chemistry; Wiley Interscience: New York, 2000.
[47] Wang Y.; Qian P.; Su J. H.; Li Y.; Bi M.; Zha Z.; Wang Z. Green. Chem.2017, 19, 4769.
[48] Dong X.; Wang R.; Jin W.; Liu C. Org. Lett.2020, 22, 3062.
[49] Deng Y.; You S.; Ruan M.; Wang Y.; Chen Z.; Yang G.; Gao, M. Adv. Synth. Catal.2021, 363, 464.
[50] Wang R.; Dong X.; Zhang Y.; Wang B.; Xia Y.; Abdukader A.; Xue F.; Jin W.; Liu, C. Chem. Eur. J.2021, 27, 14931.
[51] Yuan Y.; Liu X.; Hu J.; Wang P.; Wang S.; Alhumade H.; Lei A. Chem. Sci.2022, 13, 3002.
[52] Li X.; Huang J.; Xu L.; Liu J.; Wei, Y. Adv. Synth. Catal.2023, 365, 4647.
[53] Mdluli V.; Lehnherr D.; Lam Y. H.; Chaudhry M. T.; Newman J. A.; DaSilva J. O.; Regalado, E. L. Chem. Sci.2024, 15, 5980.
[54] Zhang W.; Jin D.; Hu Y.; Yin K.; Zou Q.; Tang L.; Qian, P. J. Org. Chem.2024, 89, 6106.
[55] Li S.; Li X.; Askar D.; Mo X.; Obolda A.; Li X.; Gao J.; Cheng, B. J. Org. Chem.2025, 90, 8269.
[56] Li Q.; Swaroop T. R.; Hou C.; Wang Z.; Pan Y.; Tang, H. Adv. Synth. Catal.2019, 361, 1761.
[57] Li Y.; Yang Q.; Yang L.; Lei N.; Zheng K. Chem. Commun.2019, 55, 4981.
[58] Wu Q. L.; Chen X. G.; Huo C. D.; Wang X. C.; Quan Z. J.New J. Chem. 2019, 43, 1531.
[59] Guo S.; Li S.; Yan W.; Liang Z.; Fu Z.; Cai H. Green Chem.2020, 22, 7343.
[60] Qing H.; Yu C.; Liu S.; Gao, M. Asian J. Org. Chem.2025, 14, e202500376.
[61] Li C. Y.; Liu Y. C.; Li Y. X.; Reddy D. M.; Lee, C. F. Org. Lett.2019, 21, 7833.
[62] Meng Z. Y.; Feng C. T.; Zhang L.; Yang Q.; Chen D. X.; Xu K. Org. Lett.2021, 23, 4214.
[63] Huang L.; Meng F.; Guo W.; Dai X.; Lv Z.; Tang P.; Guo Y.; Cheng C.; Gao Z. Org. Lett.2025, 27, 12729.
[64] Laudadio G.; Bartolomeu A. D. A.; Verwijlen L. M. H. M.; Cao Y.; de Oliveira K. T.; Noël, T. J. Am. Chem. Soc.2019, 141, 11832.
[65] Laudadio G.; Straathof N. J. W.; Lanting M. D.; Knoops B.; Hessel V.; Noël T. Green Chem.2017, 19, 4061.
[66] Park J. K.; Oh J.; Lee, S. Org. Chem. Front.2022, 9, 3407.
[67] Zhang L.; Cheng X.; Zhou, Q. Chin. J. Chem.2022, 40, 1687.
[68] Ma L.; Zhou H.; Xu M.; Hao P.; Kong X.; Duan H. Chem. Sci.2021, 12, 938.
[69] Amri N.; Wirth, T. J. Org. Chem.2021, 86, 15961.
[70] Cheng Z.; Gao X.; Yao L.; Wei Z.; Qin G.; Zhang Y.; Wang B.; Xia Y.; Abdukader A.; Xue F.; Jin W.; Liu, C. Eur. J. Org. Chem.2021, 2021, 3743.
[71] Liang Y.; Shi S. H.; Jin R.; Qiu X.; Wei J.; Tan H.; Jiang X.; Shi X.; Song S.; Jiao N. Nat. Catal.2021, 4, 116.
[72] Terent'ev A. O.; Mulina O. M.; Parshin V. D.; Kokorekin V. A.; Nikishin, G. I. Org. Biomol. Chem.2019, 17, 3482.
[73] Ai C.; Shen H.; Song D.; Li Y.; Yi X.; Wang Z.; Ling F.; Zhong W. Green Chem.2019, 21, 5528.
[74] Tian Z.; Gong Q.; Huang T.; Liu L.; Chen, T. J. Org. Chem.2021, 86, 15914.
[75] Zhong Z.; Xu P.; Ma J.; Zhou A. Tetrahedron2021, 99, 132444.
[76] Huang P.; Wang P.; Tang S.; Fu Z.; Lei, A. Angew. Chem. Int. Ed.2018, 57, 8115.
[77] Yang Z.; Shi Y.; Zhan Z.; Zhang H.; Xing H.; Lu R.; Zhang Y.; Guan M.; Wu Y. ChemElectroChem2018, 5, 3619.
[78] Mo Z. Y.; Swaroop T. R.; Tong W.; Zhang Y. Z.; Tang H. T.; Pan Y. M.; Sun H. B.; Chen, Z. F. Green Chem.2018, 20, 4428.
[79] Zhang X.; Cui T.; Zhang Y.; Gu W.; Liu P.; Sun P.Adv. Synth. Catal. 2019, 361, 2014.
[80] Breising V. M.; Gieshoff T.; Kehl A.; Kilian V.; Schollmeyer D.; Waldvogel, S. R. Org. Lett.2018, 20, 6785.
[81] Sattler L. E.; Otten C. J.; Hilt, G. Chem. Eur. J.2020, 26, 3129.
[82] Sun X.; Yang S.; Wang Z.; Liang S.; Tian H.; Yang S.; Liu Y.; Sun B.; Zeng C. ChemistrySelect2020, 5, 4637.
[83] Zheng S.; Wang K.; Luo G. Green Chem.2021, 23, 582.
[84] Wang D. Y.; Si Y.; Guo W.; Fu Y. Nat. Commun.2021, 12, 3220.
[85] Zhang T.; Wang R.; Ma L.; Liu J.; Sun J.; Wang, B. Environ. Chem. Lett.2022, 20, 2765.
[86] Zhou Z.; Gai L.; Xu L. W.; Guo Z.; Lu H. Chem. Sci.2023, 14, 10385.
[87] Liang H.; Wang L.; Ji Y.; Wang H.; Zhang, B. Angew. Chem. Int. Ed.2021, 60, 1839.
[88] Fu Z.; Xiao F.; Yin J.; Tong F.; Guo S.; Cai H. Green Chem.2024, 26, 5838.
[89] Wei Z.; Chen Z.; Xue F.; Yue Y.; Wu S.; Zhang Y.; Wang B.; Xia Y.; Jin W.; Liu C. Green Chem.2024, 26, 10189.
[90] Qiao K.; Li H.; Chen Z.; Zhu Y.; Jiang W.; Li F.; Shi L. J. Catal.2025, 447, 116133.
[91] Zhang X.; Cheng F.; Guo J.; Zheng S.; Wang X.; Li S. Nat. Synth.2024, 3, 477.
[92] Guo S.; Li S.; Zhang Z.; Yan W.; Cai H. Tetrahedron Lett.2020, 61, 151566.
[93] Amri N.; Wirth T. Synlett2020, 31, 1894.
Outlines

/