[1] (a) Smart, B. E. Chem. Rev. 1996, 96, 1555. (b) Jeschke, P.; Baston, E.; Leroux, F. R. Mini-Rev. Med. Chem. 2007, 7, 1027 and references therein. (c) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359. (d) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432. (e) Bassetto, M.; Ferla, S.; Pertusati, F. Future Med. Chem. 2015, 7, 527. [2] (a) Goure, W. F.; Leschinsky, K. L.; Wratten, S. J.; Chupp, J. P. J. Agric. Food Chem. 1991, 39, 981. (b) Pérez, R. A.; Sánchez-Brunete, C.; Miguel, E.; Tadeo, J. L. J. Agric. Food Chem. 1998, 46, 1864. (c) Kirsch, P. Modern Fluoroorganic Chemistry:Synthesis, Reactivity, Applications, 2nd ed., Wiley-VCH, Weinheim, 2013. [3] (a) Kirsch, P.; Bremer, B. Angew. Chem., Int. Ed. 2000, 39, 4216. (b) Tasaka, T.; Takenaka, S.; Kabu, K.; Morita, Y.; Okamoto, H. Ferroelectronics 2002, 276, 83. (c) Boltalina, O. V.; Nakajima, T. New Fluorinated Carbons:Fundamentals and Applications, Elsevier, Amsterdam, 2016. [4] (a) Bégué, J. P.; Bonnet-Delpon, D. Bioorganic and Medicinal Chemistry of Fluorine, Wiley-VCH, Weinheim, 2008. (b) Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology, Wiley-Blackwell, Chichester, 2009. (c) Gouverneur, V.; Muller, K. Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications, Imperial College Press, London, 2012. [5] (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881. (b) Purse, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320. (c) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359. (d) Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305. (e) Prakash, G. K. S.; Wang, F. Chim. Oggi 2012, 30, 30. (f) Wang, J.; Liu, H. Chin. J. Org. Chem. 2011, 31, 1785(in Chinese). (王江, 柳红, 有机化学, 2011, 31, 1785.) [6] For selected reviews on perfluoroalkylation reactions, see:(a) Lundgren, R. J.; Stradiotto, M. Angew. Chem., Int. Ed. 2010, 49, 9322. (b) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475. (c) Wu, X.-F.; Neumann, H.; Beller, M. Chem.-Asian J. 2012, 7, 1744. (d) Besset, T.; Schneider, C.; Cahard, D. Angew. Chem., Int. Ed. 2012, 51, 5048. (e) Ye, Y.; Sanford, M. S. Synlett 2012, 2005. (f) Qing, F.-L. Chin. J. Org. Chem. 2012, 32, 815(in Chinese). (卿凤翎, 有机化学, 2012, 32, 815.) (g) Pan, F.; Shi, Z. Acta Chim. Sinica, 2012, 70, 1679(in Chinese). (潘菲, 施章杰, 化学学报, 2012, 70, 1679.) (h) Wang, X.; Zhang, Y.; Wang, J. Sci. Sin. Chim. 2012, 42, 1417. (王兮, 张艳, 王剑波, 中国科学:化学, 2012, 42, 1417.) (i) Chen, P.; Liu, G. Synthesis 2013, 45, 2929. (j) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214. (k) Xu, J.; Liu, X.; Fu, Y. Tetrahedron Lett. 2014, 55, 585. (l) Wang, G.; He, X.; Dai, J.; Xu, H. Chin. J. Org. Chem. 2014, 34, 837(in Chinese). (王光祖, 赫侠平, 戴建军, 许华建, 有机化学, 2014, 34, 837.) (m) Zhang, J.; Jin, C.; Zhang, Y. Chin. J. Org. Chem. 2014, 34, 662(in Chinese). (张霁, 金传飞, 张英俊, 有机化学, 2014, 34, 662.) (n) Merino, E.; Nevado, C. Chem. Soc. Rev. 2014, 43, 6598. (o) Chu, L.; Qing, F.-L. Acc. Chem. Res. 2014, 47, 1513. [7] (a) Prakash, G. K. S.; Mandal, M.; Schweizer, S.; Petasis, N. A.; Olah, G. A. J. Org. Chem. 2002, 67, 3718. (b) Narjes, F.; Koehler, K. F.; Koch, U.; Gerlach, B.; Colarusso, S.; Steinkhler, C.; Brunetti, M.; Altamura, S.; De Francesco, R.; Matassa, V. G. Bioorg. Med. Chem. Lett. 2002, 12, 701. (c) Hu, J.; Zhang, W.; Wang. F. Chem. Commun. 2009, 7465. [8] (a) Li, Y.; Hu, J. Angew. Chem., Int. Ed. 2005, 44, 5882. (b) Prakash, G. K. S.; Weber, C.; Chacko, S.; Olah, G. A. Org. Lett. 2007, 9, 1863. [9] (a) Cazzola, M.; Picciolo, S.; Matera, M. G. Expert Opin. Pharmacother. 2010, 11, 441. (b) Kohl, B.; Sturm, E.; Rainer, G. US 4758579A, 1985. (c) Gajjar, D. A.; Bello, A.; Ge, Z.; Christopher, L.; Grasela, D. M. Antimicrob. Agents Chemother. 2003, 47, 2256. (d) Kastron, V. V.; Vitolin, R. O.; Fialkov, J. A.; Shelyazhenko, S. V. US 4219653, 1980. [10] (a) Brahms, D. L. S.; Dailey, W. P. Chem. Rev. 1996, 96, 1585. (b) Dolbier, W. R. Jr.; Battiste, M. A. Chem. Rev. 2003, 103, 1071. (c) Fedoryński, M. Chem. Rev. 2003, 103, 1099. (d) Romanenko, V. D.; Kukhar, V. P. Chem. Rev. 2006, 106, 3868. (e) Prakash, G. K. S.; Hu, J. Acc. Chem. Res. 2007, 40, 921. (f) Hu, J.; Zhang, W.; Wang, F. Chem. Commun. 2009, 7465. (g) Zhang, C.-P.; Chen, Q.-Y.; Guo, Y.; Xiao, J.-C.; Gu, Y.-C. Chem. Soc. Rev. 2012, 41, 4536. (h) Bizet, V.; Kowalczyk, R.; Bolm, C. Chem. Soc. Rev. 2014, 43, 2426. (i) Ni, C.; Hu, J. Synthesis 2014, 46, 0842. (j) Shen, X.; Hu, J. Eur. J. Org. Chem. 2014, 4437. (k) Belhomme, M.-C.; Besset, T.; Poisson, T.; Pannecoucke, X. Chem.-Eur. J. 2015, 21, 12836. (l) Barata-Vallejo, S.; Bonesi, S. M.; Postigo, A. Org. Biomol. Chem. 2015, 13, 11153. (m) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765. (n) Ni, C.; Zhu, L.; Hu, J. Acta Chim. Sinica 2015, 73, 90(in Chinese). (倪传法, 朱林桂, 胡金波, 化学学报, 2015, 73, 90.) (o) Pan, X.; Xia, H.; Wu, J. Org. Chem. Front. 2016, 3, 1163. (p) Koike, T.; Akita, M. Chem 2018, 4, 409. (q) Yerien, D. E.; Barata-Vallejo, S.; Postigo, A. Chem.-Eur. J. 2017, 23, 14676. (r) Rong, J.; Ni, C.; Hu, J. Asian J. Org. Chem. 2017, 6, 139. (s) Dilman, A. D.; Levin, V. V. Acc. Chem. Res. 2018, 51, 1272. (t) Lemos, A.; Lemaire, C.; Luxen, A. Adv. Synth. Catal. 2019, 361, 1500. (u) Koike, T.; Akita, M. Org. Biomol. Chem. 2019, 17, 5413. (v) Wang, X.; Wang, X.; Wang, J. Tetrahedron 2019, 75, 949. (w) Xie, Q.; Hu, J. Chin. J. Chem. 2020, 38, 202. [11] Umemoto, T. Chem. Rev. 1996, 96, 1757. [12] (a) Yagupol'skii, L. M.; Kondratenko, N. Y.; Timofeeva, G. N. Zh. Org. Khim. 1984, 20, 115. (b) Umemoto, T.; Ishihara, S. J. Am. Chem. Soc. 1993, 115, 2156. (c) Umemoto, T.; Ishihara, S.; Adachi, K. J. Fluorine Chem. 1995, 74, 77. (d) Umemoto, T.; Ishihara, S. J. Fluorine Chem. 1999, 98, 75. (e) Umemoto, T.; Adachi, K. J. Org. Chem. 1994, 59, 5692. (f) Yang, J. J.; Kirchmeier, R. L.; Shreeve, J. M. J. Org. Chem. 1998, 63, 2656. (g) Ma, J.-A.; Cahard, D. J. Org. Chem. 2003, 68, 8726. [13] (a) Prakash, G. K. S.; Weber, C.; Chacko, S.; Olah, G. A. Org. Lett. 2007, 9, 1863. (b) Prakash, G. K. S.; Weber, C.; Chacko, S.; Olah, G. A. J. Comb. Chem. 2007, 9, 920. [14] Yue, C.-B.; Lin, J.-H.; Cai, J.; Zhang, C.-P.; Zhao, G.; Xiao, J.-C.; Li, H. RSC Adv. 2016, 6, 35705. [15] (a) Noto, N.; Koike, T.; Akita, M. Chem. Sci. 2017, 8, 6375. (b) Noto, N.; Tanaka, Y.; Koike, T.; Akita, M. ACS Catal. 2018, 8, 9408. [16] (a) Tang, X.-J.; Thomoson, C. S.; Dolbier, W. R. Jr. Org. Lett. 2014, 16, 4594. (b) Zhang, Z.; Tang, X.-J.; Thomoson, C. S.; Dolbier, W. R. Jr. Org. Lett. 2015, 17, 3528. (c) Zhang, Z.; Tang, X.-J.; Dolbier, W. R. Jr. Org. Lett. 2015, 17, 4401. (d) Rong, J.; Deng, L.; Tan, P.; Ni, C.; Gu, Y.; Hu, J. Angew. Chem., Int. Ed. 2016, 55, 2743. (e) Fu, W.; Han, X.; Zhu, M.; Xu, C.; Wang, Z.; Ji, B.; Hao, X.-Q.; Song, M.-P. Chem. Commun. 2016, 52, 13413. (f) Zhang, Z.; Tang, X.-J.; Dolbier, W. R. Jr. Org. Lett. 2016, 18, 1048. (g) Miao, W.; Zhao, Y.; Ni, C.; Gao, B.; Zhang, W.; Hu, J. J. Am. Chem. Soc. 2018, 140, 880. (h) Zhang, Z.; Martinez, H.; Dolbier, W. R. J. Org. Chem. 2017, 82, 2589. (i) Zhu, M.; Fu, W.; Wang, Z.; Xu, C.; Ji, B. Org. Biomol. Chem. 2017, 15, 9057. (j) Duchemin, N.; Buccafusca, R.; Daumas, M.; Ferey, V.; Arseniyadis, S. Org. Lett. 2019, 21, 8205. (k) Wang, Z.-S.; Chen, Y.-B.; Zhang, H.-W.; Sun, Z.; Zhu, C.; Ye, L. J. Am. Chem. Soc. 2020, 142, 3636. [17] (a) Lu, S.-L.; Li, X.; Qin, W.-B.; Liu, J.-J.; Huang, Y.-Y.; Wong, H. N. C.; Liu, G.-K. Org. Lett. 2018, 20, 6925. (b) Liu, G.-K.; Li, X.; Qin, W.-B.; Peng, X.-S.; Wong, H. N. C.; Zhang, L.; Zhang, X. Chem. Commun. 2019, 55, 7446. (c) Liu, G.-K.; Qin, W.-B.; Li, X.; Lin, L.-T.; Wong, H. N. C. J. Org. Chem. 2019, 84, 15948. (d) Liu, G.-K.; Li, X.; Qin, W.-B.; Lin, W.-F.; Lin, L.-T.; Chen, J.-Y.; Liu, J.-J. Chin. Chem. Lett. 2019, 30, 1515. [18] (a) Zhang, C.; Cao, H.; Wang, Z.; Zhang, C.; Chen, Q.; Xiao, J. Synlett 2010, 1089. (b) Liu, G.; Mori, S.; Wang, X.; Noritake, S.; Tokunaga, E.; Shibata, N. New J. Chem. 2012, 36, 1769. (c) Liu, G.; Wang, X.; Lu, X.; Xu, X.-H.; Tokunaga, E.; Shibata, N. ChemistryOpen 2012, 1, 227. (d) Liu, G.; Wang, X.; Xu, X.-H.; Lu, X.; Tokunaga, E.; Tsuzuki, S.; Shibata, N. Org. Lett. 2013, 15, 1044. [19] (a) Zhang, W.; Wang, F.; Hu, J. Org. Lett. 2009, 11, 2109. (b) Pégot, B.; Urban, C.; Bourne, A.; Le, T. N.; Bouvet, S.; Marrot, J.; Diter, P.; Magnier, E. Eur. J. Org. Chem. 2015, 3069. [20] (a) Prakash, G. K. S.; Zhang, Z.; Wang, F.; Ni, C.; Olah, G. A. J. Fluorine Chem. 2011, 132, 792. (b) Yang, Y.; Lu, X.; Liu, G.; Tokunaga, E.; Tsuzuki, S.; Shibata, N. ChemistryOpen 2012, 1, 221. [21] (a) Arai, Y.; Tomita, R.; Ando, G.; Koike, T.; Akita, M. Chem.-Eur. J. 2016, 22, 1262. (b) Noto, N.; Koike, T.; Akita, M. J. Org. Chem. 2016, 81, 7064. (c) Nakayama, Y.; Ando, G.; Abe, M.; Koike, T.; Akita, M. ACS Catal. 2019, 9, 6555. [22] (a) Zhu, J.; Liu, Y.; Shen, Q. Angew. Chem., Int. Ed. 2016, 55, 9050. (b) Zhu, J.; Zheng, H.; Xue, X.-S.; Xiao, Y.; Liu, Y.; Shen, Q. Chin. J. Chem. 2018, 36, 1069. [23] Zheng, J.; Cai, J.; Lin, J.-H.; Guo, Y.; Xiao, J.-C. Chem. Commun. 2013, 49, 7513. [24] (a) Zheng, J.; Lin, J.-H.; Cai, J.; Xiao, J.-C. Chem.-Eur. J. 2013, 19, 15261. (b) Deng, X.-Y.; Lin, J.-H.; Zheng, J.; Xiao, J.-C. Chem. Commun. 2015, 51, 8805. (c) Liu, C.; Deng, X.-Y.; Zeng, X.-L.; Zhao, G.; Lin, J.-H.; Wang, H.; Xiao, J.-C. J. Fluorine Chem. 2016, 192, 27. [25] Hua, M.-Q.; Wang, W.; Liu, W.-H.; Wang, T.; Zhang, Q.; Huang, Y.; Zhu, W.-H. J. Fluorine Chem. 2016, 181, 22. [26] Zheng, Q.-T.; Wei, Y.; Zheng, J.; Duan, Y.-Y.; Zhao, G.; Wang, Z.-B.; Lin, J.-H.; Zheng, X.; Xiao, J.-C. RSC Adv. 2016, 6, 82298. [27] Deng, X.-Y.; Lin, J.-H.; Xiao, J.-C. J. Fluorine Chem. 2015, 179, 116. [28] Zheng, J.; Lin, J.-H.; Yu, L.-Y.; Wei, Y.; Zheng, X.; Xiao, J.-C. Org. Lett. 2015, 17, 6150. [29] (a) Reger, D. L.; Dukes, M. D. J. Organomet. Chem. 1978, 153, 67. (b) Vougioukalakis, G. C.; Grubbs, R. H. Chem. Rev. 2010, 110, 1746. [30] Feng, Z.; Min, Q.-Q.; Zhang, X. Org. Lett. 2016, 18, 44. [31] Deng, X.-Y.; Lin, J.-H.; Xiao, J.-C. Org. Lett. 2016, 18, 4384. [32] Fu, X.-P.; Xue, X.-S.; Zhang, X.-Y.; Xiao, Y.-L.; Zhang, S.; Guo, Y.-L.; Leng, X.; Houk, K. N.; Zhang, X. Nat. Chem. 2019, 11, 948. [33] (a) Zheng, J.; Lin, J.-H.; Deng, X.-Y.; Xiao, J.-C. Org. Lett. 2015, 17, 532. (b) Wei, Y.; Yu, L.; Lin, J.; Zheng, X.; Xiao, J. Chin. J. Chem. 2016, 34, 481. [34] (a) Zheng, J.; Wang, L.; Lin, J.-H.; Xiao, J.-C.; Liang, S. H. Angew. Chem., Int. Ed. 2015, 54, 13236. (b) Zheng, J.; Cheng, R.; Lin, J.-H.; Yu, D.-H.; Ma, L.; Jia, L.; Zhang, L.; Wang, L.; Xiao, J.-C.; Liang, S. H. Angew. Chem., Int. Ed. 2017, 56, 3196. (c) Yu, J.; Lin, J.-H.; Xiao, J.-C. Angew. Chem., Int. Ed. 2017, 56, 16669. (d) Luo, J.-J.; Zhang, M.; Lin, J.-H.; Xiao, J.-C. J. Org. Chem. 2017, 82, 11206. (e) Chen, X.-L.; Zhou, S.-H.; Lin, J.-H.; Deng, Q.-H.; Xiao, J.-C. Chem. Commun. 2019, 55, 1410. [35] (a) Lin, Q.-Y.; Xu, X.-H.; Zhang, K.; Qing, F.-L. Angew. Chem., Int. Ed. 2016, 55, 1479. (b) Ran, Y.; Lin, Q.-Y.; Xu, X.-H.; Qing, F.-L. J. Org. Chem. 2016, 81, 7001. (c) Lin, Q.-Y.; Ran, Y.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2016, 18, 2419. (d) Hu, W.-Q.; Xu, X.-H.; Qing, F.-L. J. Fluorine Chem. 2018, 208, 73. [36] Ran, Y.; Lin, Q.-Y.; Xu, X.-H.; Qing, F.-L. J. Org. Chem. 2017, 82, 7373. [37] Yu, J.; Lin, J.-H.; Cao, Y.-C.; Xiao, J.-C. Org. Chem. Front. 2019, 6, 3580. [38] Zhang, M.; Lin, J.-H.; Xiao, J.-C. Angew. Chem., Int. Ed. 2019, 58, 6079. [39] (a) Urban, C.; Macé, Y.; Cadoret, F.; Blazejewski, J. C.; Magnier, E. Adv. Synth. Catal. 2010, 352, 2805. (b) Urban, C.; Cadoret, F.; Blazejewski, J. C.; Magnier, E. Eur. J. Org. Chem. 2011, 4862. (c) Macé, Y.; Magnier, E. Eur. J. Org. Chem. 2012, 2479. [40] (a) Zhang, W.; Zhu, J.; Hu, J. Tetrahedron Lett. 2008, 49, 5006. (b) He, Z.; Luo, T.; Hu, M.; Cao, Y.; Hu, J. Angew. Chem., Int. Ed. 2012, 51, 3944. (c) He, Z.; Hu, M.; Luo, T.; Li, L.; Hu, J. Angew. Chem., Int. Ed. 2012, 51, 11545. [41] Wang, X.; Liu, G.; Xu, X.-H.; Shibata, N.; Tokunaga, E.; Shibata, N. Angew. Chem., Int. Ed. 2014, 53, 1827. |