Chinese Journal of Organic Chemistry    

ARTICLE

基于2-芳基-3H-吲哚与环丙醇的串联反应合成C2-螺环吲哚啉衍生物

杨雪莹, 徐园双, 张新迎*, 范学森*   

  1. 河南省有机功能分子与药物创新重点实验室 河南师范大学化学化工学院 新乡453007
  • 收稿日期:2024-06-01 修回日期:2024-07-15
  • 基金资助:
    国家自然科学基金(No. U2004189),中原科技创新领军人才(No. 224200510009)和河南省博士后基金(No. HN2022041)资助项目.

Synthesis of C2-spiroindolines based on the cascade reaction of 2-aryl-3H-indoles with cyclopropanols

Xueying Yang, Yuanshuang Xu, Xinying Zhang*, Xuesen Fan*   

  1. Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
  • Received:2024-06-01 Revised:2024-07-15
  • Contact: *E-mail: xuesen.fan@htu.cn; E-mail: xinyingzhang@htu.cn
  • Supported by:
    National Natural Science Foundation of China (No. U2004189), Central Plains Science and Technology Innovation Leader Project (No. 224200510009) and Postdoctoral Research Grant in Henan Province (No. HN2022041).

Presented herein is a novel synthesis of C2-spiroindoline derivatives based on the cascade reaction of 2-aryl-3H-indoles with cyclopropanols. The formation of product involves Rh(III)-catalyzed aryl C(sp2)-H bond alkylation of 2-aryl-3H-indole, which is followed by intramolecular spiroannulation. In this tandem process, cyclopropanol acts as not only an alkylating agent but also a masked nucleophile to take part in the construction of the spirocyclic scaffold. Meanwhile, air acts as an economical and sustainable oxidant to promote the regeneration of the active catalyst. By using this method, hybrid compounds containing the central scaffolds of some clinical drugs were prepared effectively. In general, this newly developed method has advantages such as easily obtainable substrates, concise synthetic procedure, excellent atom-economy, good compatibility with diverse functional groups and ready scalability.

Key words: C2-Spiroindolines, Synthesis, C-H bond activation, Cascade reaction, 2-Aryl-3H-indoles, Cyclopropanols