Chin. J. Org. Chem. ›› 2010, Vol. 30 ›› Issue (12): 1914-1920. Previous Articles     Next Articles

Notes

2/3-取代硫基-5-邻羟基苯基唑类化合物的合成及抑菌活性

朱姗姗1,卢俊瑞*,1,辛春伟1,卢博为2,鲍秀荣1,唐大伟1,邹敏1,刘倩1   

  1. (1天津理工大学化学化工学院 天津 300384)
    (2南开大学化学学院 天津 300071)
  • 收稿日期:2009-10-27 修回日期:2010-05-07 发布日期:2010-07-05
  • 通讯作者: 卢俊瑞 E-mail:lujunrui@tjut.edu.cn
  • 基金资助:

    国家自然科学基金(Nos. 20776114;20976135);天津市高校科技发展基金(Nos. 2006ZD33;20050712)

Synthesis and Antibacterial Activities of 2/3-Substituted Sul-fur-5-o-hydroxyphenyl Zoles Compounds

Zhu shanshan1 Lu Junrui*,1 Xin Chun-wei1 Lu Bowei2 Bao Xiurong1 Tang Dawei1 Zou Min1 Liu Qian1   

  1. (1 School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384)
    (2 College of Chemistry, Nankai University, Tian-jin 300071)
  • Received:2009-10-27 Revised:2010-05-07 Published:2010-07-05
  • Contact: Jun-Rui LU E-mail:lujunrui@tjut.edu.cn

A series of novel 2/3-substituted sulfur-5-o-hydroxyphenyl zoles compounds 5a7d were designed by means of combining segments o-hydroxyphenyl and azole heterocycles, according to the superpostion principle of reinforcement of biological activities. Salicylic hydrazides were synthesized by methylsalicylate with hydrazinehydrate in ethanol, then, reacted with carbon disulfide or ammonium thiocyanate and hydrochloride to obtain 5-o-hydroxyphenyl-1,3,4-oxadiazole-2-thiones (2), 5-o-hydroxyphenyl-1,3,4- thiadia-zole-2-thiones (3) and 5-o-hydroxyphenyl-4H-1,2,4-triazole-3-thiones (4). Finally, under alkaline conditions, the target compounds were obtained by nucleophilic substi-tution reaction with the halogenated acetophenone. The structures of final products were determined by 1HNMR, IR spectra and element analysis. The result of preliminary bioassay showed that the title compounds had 92% inhibitory rate against Monilia albican and Escherichia coli at 0.01% mass concentration and a favorable extent of antibacterial activities against Staphylococcus aureus (over 82%). This kind of compounds have broad spectrum antibacterial activities against different bacteria and they would be a good choice of antibacterial compounds against fungi and gram-negative bacte-ria. The analysis of structure-activity relationship showed that the antibacterial activities of title compounds were enhanced by the halogen groups, such as Cl and Br, but reduced by electron-donating groups of the phenylethanone rings, such as CH3.

Key words: 2-substituted sulfur-5-o-hydroxyphenyl-1,3,4-oxadiazole, 2-substituted sulfur-5-o-hydroxy- phenyl-1,3,4-thiadiazole, 3-substituted sulfur-5-o-hydroxyphenyl-1,2,4-triazole, characteriza-tion, antibacte- rial activity