Chin. J. Org. Chem. ›› 2016, Vol. 36 ›› Issue (10): 2272-2283.DOI: 10.6023/cjoc201606015 Previous Articles     Next Articles

Reviews

基于异靛青的聚合物场效应晶体管材料研究进展

卢阳, 丁一凡, 王婕妤, 裴坚   

  1. 北京大学化学与分子工程学院 北京分子科学国家实验室 生物有机与分子工程教育部重点实验室高分子化学与物理教育部重点实验室 软物质科学与工程中心 北京 100871
  • 收稿日期:2016-06-08 修回日期:2016-07-04 发布日期:2016-07-08
  • 通讯作者: 王婕妤,E-mail:jieyuwang@pku.edu.cn;裴坚,E-mail:jianpei@pku.edu.cn E-mail:jieyuwang@pku.edu.cn;jianpei@pku.edu.cn
  • 基金资助:

    国家国家自然科学基金(No.21302009)资助项目.

Research Progress in Isoindigo-Based Polymer Field-Effect Transistor Materials

Lu Yang, Ding Yifan, Wang Jieyu, Pei Jian   

  1. Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, Key Laboratory of Polymer Chemistry & Physics of the Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871
  • Received:2016-06-08 Revised:2016-07-04 Published:2016-07-08
  • Contact: 10.6023/cjoc201606015 E-mail:jieyuwang@pku.edu.cn;jianpei@pku.edu.cn
  • Supported by:

    Project supported by the Major State Basic Research Development Program from the Ministry of Science and Technology (973 Program, No.2013CB933501), and the National Natural Science Foundation of China (No.21302009).

Since the 1980 s, organic electronics had made great progress. Organic semiconductors have attracted much attention of scientists from both academy and industry due to their promising applications in low-cost, lightweight, flexible and solution-processable electronics. The development of the third-generation donor-acceptor (D-A) polymers greatly improved the device performance of organic semiconductors. Recently, isoindigo-based polymers develop rapidly, especially as organic field-effect transistors (OFETs) materials, and high hole mobilities up to 3.62 cm2·V-1·s-1 for IID and 14.4 cm2·V-1·s-1 for its derivatives, were successfully achieved. In this review, the recent advance in isoindigo-based polymer field-effect transistor materials is summarized, which focus on the molecular design and synthesis, device fabrication and structure-property rela-tionship study of isoindigo-based polymers, aiming to providing valuable information for the materials exploitation in the future.

Key words: isoindigo, donor-acceptor conjugated polymers, polymer field-effect transistors