Chinese Journal of Organic Chemistry ›› 2020, Vol. 40 ›› Issue (11): 3953-3962.DOI: 10.6023/cjoc202003050 Previous Articles     Next Articles

Special Issue: 创刊四十周年专辑

烷氧基取代的嘧啶水杨酸衍生物的设计、合成及生物活性研究

曲仁渝a, 蔡卓梅a, 杨景芳a, 刘玉超a, 陈琼a, 牛聪伟b, 席真b, 杨光富a   

  1. a 华中师范大学化学学院 农药与化学生物学教育部重点实验室智能生物传感技术与健康国际联合研究中心 武汉 430079;
    b 南开大学 元素有机化学国家重点实验室 天津 300071
  • 收稿日期:2020-03-20 修回日期:2020-04-12 发布日期:2020-04-23
  • 通讯作者: 杨光富 E-mail:gfyang@mail.ccnu.edu.cn
  • 基金资助:
    国家重点研发项目基金(No.2018YFD0200100)、国家自然科学基金(Nos.21837001,21772058,31901910)和中国博士后科学基金(No.2018M642880)资助项目.

Design, Synthesis and Biological Activity of Pyrimidyl-Salicylate Derivatives Containing Alkoxy Moiety

Qu Renyua, Cai Zhuomeia, Yang Jingfanga, Liu Yuchaoa, Chen Qionga, Niu Congweib, Xi Zhenb, Yang Guangfua   

  1. a Key Laboratory of Pesticide&Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079;
    b State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071
  • Received:2020-03-20 Revised:2020-04-12 Published:2020-04-23
  • Supported by:
    Project supported by the National Key Research and Development Program (No. 2018YFD0200100), the National Natural Science Foundation of China (Nos. 21837001, 21772058, 31901910) and the China Postdoctoral Science Foundation (No. 2018M642880).

In an attempt to search new antiresistance acetohydroxyacid synthase (AHAS, EC 2.2.1.6) inhibitors to combat weed resistance associated with AHAS mutation (P197L), a series of pyrimidyl-salicylate derivatives containing alkoxy side chain were designed via the strategy of “conformational flexibility analysis” and then synthesized. Nine compounds showed excellent antiresistance property against P197L mutant. Their resistance factor (RF) values ranged from 0.31 to 1.00. Especially, 2-((4,6-dimethoxypyrimidin-2-yl)oxy)-6-(2-fluoroethoxy)benzoic acid (5l) was further identified as the most promising antiresistance AHAS inhibitor due to quite low RF value (RF=0.31) and sub-micromolar inhibition toward both wild-type AtAHAS and P197L mutant. Furthermore, 2-((4,6-dimethoxypyrimidin-2-yl)oxy)-6-(2-methoxyethoxy)benzoic acid (5a), 2-((4,6-dimethoxypyrimidin-2-yl)oxy)-6-(3-methoxypropoxy)benzoic acid (5f), 2-((4,6-dimethoxypyrimidin-2-yl)oxy)-6-(2-fluoroethoxy)benzoic acid (5l), and 2-(2,2-difluoroethoxy)-6-((4,6-dimethoxypyrimidin-2-yl)oxy)benzoic acid (5m) also exhibited potent herbicidal activities against sensitive and resistant (P197L-AHAS) Descurainia sophia at 150 g of active ingredient (ai)/ha. Even at the dosage as low as 37.5 g ai/ha, compound 5l still maintained over 85% weed control toward the above two weeds, which has the great potential to be developed as new lead to control herbicide-resistant weeds caused by P197L mutation.

Key words: acetohydroxyacid synthase, P197L mutant, antiresistance, conformation flexibility, resistant