Chinese Journal of Organic Chemistry ›› 2022, Vol. 42 ›› Issue (9): 2981-2987.DOI: 10.6023/cjoc202204034 Previous Articles Next Articles
NOTES
曾旭群, 张倩, 吴旭枫, 张静枫, 张鑫伟, 黄晓雷*()
收稿日期:
2022-04-14
修回日期:
2022-05-20
发布日期:
2022-06-08
通讯作者:
黄晓雷
基金资助:
Xuqun Zeng, Qian Zhang, Xufeng Wu, Jingfeng Zhang, Xinwei Zhang, Xiaolei Huang()
Received:
2022-04-14
Revised:
2022-05-20
Published:
2022-06-08
Contact:
Xiaolei Huang
Supported by:
Share
Xuqun Zeng, Qian Zhang, Xufeng Wu, Jingfeng Zhang, Xinwei Zhang, Xiaolei Huang. Nickel-Catalyzed Heck Reaction of Cycloalkenes with Inert C—O Bonds of Aryl Carbonates and Aryl Sulfamates[J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2981-2987.
Entry | Reductive metal | Solvent | T/°C | Yieldb/% |
---|---|---|---|---|
1 | Zn | DMF | 100 | 85 |
2c | Zn | DMF | 100 | 40 |
3d | Zn | DMF | 100 | 68 |
4 | Mn | DMF | 100 | 0 |
5 | Mg | DMF | 100 | 0 |
6 | Fe | DMF | 100 | 0 |
7 | Zn | Dioxane | 100 | 0 |
8 | Zn | Toluene | 100 | 0 |
9 | Zn | DCE | 100 | 0 |
10 | Zn | DMSO | 100 | 64 |
11 | Zn | DMA | 100 | 72 |
12 | Zn | DMF | 90 | 36 |
13 | Zn | DMF | 110 | 64 |
14 | Zn | DMF | 120 | 62 |
Entry | Reductive metal | Solvent | T/°C | Yieldb/% |
---|---|---|---|---|
1 | Zn | DMF | 100 | 85 |
2c | Zn | DMF | 100 | 40 |
3d | Zn | DMF | 100 | 68 |
4 | Mn | DMF | 100 | 0 |
5 | Mg | DMF | 100 | 0 |
6 | Fe | DMF | 100 | 0 |
7 | Zn | Dioxane | 100 | 0 |
8 | Zn | Toluene | 100 | 0 |
9 | Zn | DCE | 100 | 0 |
10 | Zn | DMSO | 100 | 64 |
11 | Zn | DMA | 100 | 72 |
12 | Zn | DMF | 90 | 36 |
13 | Zn | DMF | 110 | 64 |
14 | Zn | DMF | 120 | 62 |
[1] |
For selected reviews, see: (a) Zheng, Y.-L.; Newman, S. G.. Chem. Commun. 2021, 57, 2591.
doi: 10.1039/D0CC08389E pmid: 32491839 |
(b) Clevenger, A. L.; Stolley, R. M.; Aderibigbe, J.; Louie, J. Chem. Rev. 2020, 120, 6124.
doi: 10.1021/acs.chemrev.9b00682 pmid: 32491839 |
|
(c) Boit, T. B.; Bulger, A. S.; Dander, J. E.; Garg, N. K. ACS Catal. 2020, 10, 12109.
doi: 10.1021/acscatal.0c03334 pmid: 32491839 |
|
(d) Cheng, L.; Zhou, Q. Acta Chim. Sinica 2020, 78, 1017. (in Chinese)
doi: 10.6023/A20070335 pmid: 32491839 |
|
(程磊, 周其林, 化学学报, 2020, 78, 1017.)
doi: 10.6023/A20070335 pmid: 32491839 |
|
(e) Wu, L.; Wei, H.; Shen, J.; Chen, J.; Zhang, W. Acta Chim. Sinica 2021, 79, 1331. (in Chinese)
doi: 10.6023/A21070338 pmid: 32491839 |
|
(吴良, 魏瀚林, 申杰峰, 陈建中, 张万斌, 化学学报, 2021, 79, 1331.)
doi: 10.6023/A21070338 pmid: 32491839 |
|
(f) Liang, L.; Zhang, L.; Peng, Y.; Liu, H. Chin. J. Org. Chem. 2022, 42, 1033. (in Chinese)
doi: 10.6023/cjoc202110026 pmid: 32491839 |
|
(梁陆祺, 张立志, 彭永利, 刘会, 有机化学, 2022, 42, 1033.)
doi: 10.6023/cjoc202110026 pmid: 32491839 |
|
[2] |
For selected reviews, see: (a) Qiu, Z.; Li, C.-J. Chem. Rev. 2020, 120, 10454.
doi: 10.1021/acs.chemrev.0c00088 pmid: 21133429 |
(b) Han, F.-S. Chem. Soc. Rev. 2013, 42, 5270.
doi: 10.1039/c3cs35521g pmid: 21133429 |
|
(c) Mesganaw, T.; Garg, N. K. Org. Process Res. Dev. 2013, 17, 29.
doi: 10.1021/op300236f pmid: 21133429 |
|
(d) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev. 2011, 111, 1346.
doi: 10.1021/cr100259t pmid: 21133429 |
|
(e) Li, B.-J.; Yu, D.-G.; Sun, C.-L.; Shi, Z.-J. Chem.-Eur. J. 2011, 17, 1728.
doi: 10.1002/chem.201002273 pmid: 21133429 |
|
[3] |
For selected examples, see: (a) Hong, X.; Liang, Y.; Houk, K. N. J. Am. Chem. Soc. 2014, 136, 2017.
doi: 10.1021/ja4118413 pmid: 25629169 |
(b) Uthayopas, C.; Surawatanawong, P. Dalton Trans. 2019, 48, 7817.
doi: 10.1039/c9dt00455f pmid: 25629169 |
|
(c) Gan, Y.; Wang, G.; Xie, X.; Liu, Y. J. Org. Chem. 2018, 83, 14036.
doi: 10.1021/acs.joc.8b02498 pmid: 25629169 |
|
(d) Takise, R.; Itami, K.; Yamaguchi, J. Org. Lett. 2016, 18, 4428.
doi: 10.1021/acs.orglett.6b02265 pmid: 25629169 |
|
(e) Yang, J.; Chen, T.; Han, L.-B. J. Am. Chem. Soc. 2015, 137, 1782.
doi: 10.1021/ja512498u pmid: 25629169 |
|
(f) Yu, D.-G.; Li, B.-J.; Shi, Z.-J. Acc. Chem. Res. 2010, 43, 1486.
doi: 10.1021/ar100082d pmid: 25629169 |
|
[4] |
Rappoport, Z. The Chemistry of Phenols, Wiley: Chichester, U. K., 2003.
|
[5] |
(a) Peng, Y.; Han, C.; Luo, Y.; Li, G.; Huo, X.; Zhang, W. Angew. Chem. Int. Ed. 2022, 61, e202203448.
|
(b) Gupta, A.; Kumar, J.; Bhadra, S. Org. Biomol. Chem. 2018, 16, 3716.
doi: 10.1039/C8OB00911B |
|
[6] |
Quasdorf, K. W.; Riener, M.; Petrova, K. V.; Garg, N. K. J. Am. Chem. Soc. 2009, 131, 17748.
doi: 10.1021/ja906477r pmid: 19928764 |
[7] |
Kuwano, R.; Shimizu, R. Chem. Lett., 2011, 40, 913.
doi: 10.1246/cl.2011.913 |
[8] |
Guo, L.; Hsiao, C.-C.; Yue, H.; Liu, X.; Rueping, M. ACS Catal. 2016, 6, 4438.
doi: 10.1021/acscatal.6b00801 |
[9] |
Purohit, P.; Seth, K.; Kumar, A.; Chakraborti, A. K. ACS Catal. 2017, 7, 2452.
doi: 10.1021/acscatal.6b02912 |
[10] |
Yue, H.; Guo, L.; Liu, X.; Rueping, M. Org. Lett. 2017, 19, 1788.
doi: 10.1021/acs.orglett.7b00556 |
[11] |
For selected examples: (a) Zhang, H.; Wu, X.; Wei, Y.; Zhu, C. Org. Lett. 2019, 21, 7568.
doi: 10.1021/acs.orglett.9b02838 pmid: 31478382 |
(b) White, L. V.; Schwartz, B. D.; Banwell, M. G.; Willis, A. C. J. Org. Chem. 2011, 76, 6250.
doi: 10.1021/jo201005d pmid: 31478382 |
|
(c) Lim, Y.; Park, Y.-S.; Kang, Y.; Jang, D. Y.; Kim, J. H.; Kim, J.-J.; Sellinger, A.; Yoon, D. J. Am. Chem. Soc. 2011, 133, 1375.
doi: 10.1021/ja1061517 pmid: 31478382 |
|
(d) Yanagisawa, A.; Nishimura, K.; Ando, K.; Nezu, T.; Maki, A.; Kato, S.; Tamaki, W.; Imai, E.; Mohri, S.-I. Org. Process Res. Dev. 2010, 14, 1182.
doi: 10.1021/op1001287 pmid: 31478382 |
|
(e) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed., 2005, 44, 4442.
doi: 10.1002/anie.200500368 pmid: 31478382 |
|
[12] |
For selected reviews and examples, see: (a) Dong, X.; Hou, Y.; Meng, F.; Liu, H.; Liu, H. Chin. J. Org. Chem. 2017, 37, 1088. (in Chinese)
doi: 10.6023/cjoc201702040 pmid: 11749313 |
(董旭, 侯永正, 孟凡威, 刘洪波, 刘会, 有机化学, 2017, 37, 1088.)
doi: 10.6023/cjoc201702040 pmid: 11749313 |
|
(b) Walker, B. R.; Sevov, C. S. ACS Catal. 2019, 9, 7197.
doi: 10.1021/acscatal.9b02230 pmid: 11749313 |
|
(c) Ehle, A. R.; Zhou, Q.; Watson, M. P. Org. Lett. 2012, 14, 1202.
doi: 10.1021/ol203322v pmid: 11749313 |
|
(d) Gøgsig, T. M.; Kleimark, J.; Nilsson Lill, S. O.; Korsager, S.; Lindhardt, A. T.; Norrby, P.-O.; Skrydstrup, T. J. Am. Chem. Soc. 2011, 134, 443.
doi: 10.1021/ja2084509 pmid: 11749313 |
|
(e) Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106, 4644.
doi: 10.1021/cr0683966 pmid: 11749313 |
|
(f) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009.
pmid: 11749313 |
|
(g) Heck, R. F. Acc. Chem. Res. 1979, 12, 146.
doi: 10.1021/ar50136a006 pmid: 11749313 |
|
[13] |
(a) Djakovitch, L.; Wagner, M.; Hartung, C. G.; Beller, M.; Koehler, K. J. Mol. Catal. A: Chem. 2004, 219, 121.
doi: 10.1016/j.molcata.2004.04.035 pmid: 16118869 |
(b) Bräse, S.; Schroen, M. Angew. Chem. Int. Ed. 1999, 38, 1071.
pmid: 16118869 |
|
(c) Hartung, C. G.; Köhler, K.; Beller, M. Org. Lett. 1999, 1, 709.
pmid: 16118869 |
|
[14] |
For selected reviews and examples: (a) Huang, X.; Teng, S.; Chi, Y. R.; Xu, W.; Pu, M.; Wu, Y.-D.; Zhou, J. S. Angew. Chem. Int. Ed. 2021, 60, 2828.
doi: 10.1002/anie.202011036 pmid: 12914487 |
(b) Jiao, Z.; Shi, Q.; Zhou, J. S. Angew. Chem. Int. Ed. 2017, 56, 14567.
doi: 10.1002/anie.201708435 pmid: 12914487 |
|
(c) Desrosiers, J.-N.; Wen, J.; Tcyrulnikov, S.; Biswas, S.; Qu, B.; Hie, L.; Kurouski, D.; Wu, L.; Grinberg, N.; Haddad, N.; Busacca, C. A.; Yee, N. K.; Song, J. J.; Garg, N. K.; Zhang, X.; Kozlowski, M. C.; Senanayake, C. H. Org. Lett. 2017, 19, 3338.
doi: 10.1021/acs.orglett.7b01054 pmid: 12914487 |
|
(d) Oliveira, C. C.; Pfaltz, A.; Correia, C. R. D. Angew. Chem. Int. Ed. 2015, 54, 14036.
doi: 10.1002/anie.201507927 pmid: 12914487 |
|
(e) Hu, J.; Hirao, H.; Li, Y.; Zhou, J. Angew. Chem. Int. Ed. 2013, 52, 8676.
doi: 10.1002/anie.201303753 pmid: 12914487 |
|
(f) Werner, E. W.; Mei, T.-S.; Burckle, A. J.; Sigman, M. S. Science 2012, 338, 1455.
doi: 10.1126/science.1229208 pmid: 12914487 |
|
(g) Mc Cartney, D.; Guiry, P. J. Chem. Soc. Rev. 2011, 40, 5122.
doi: 10.1039/c1cs15101k pmid: 12914487 |
|
(h) Tietze, L. F.; Ila, H.; Bell, H. P. Chem. Rev. 2004, 104, 3453.
pmid: 12914487 |
|
(i) Dounay, A. B.; Overman, L. E. Chem. Rev. 2003, 103, 2945.
pmid: 12914487 |
|
[15] |
(a) Zhou, J. S.; Huang, X.; Teng, S.; Chi, Y. R. Chem. Commun. 2021, 57, 3933.
doi: 10.1039/D1CC00634G |
(b) Wu, X.; Lu, Y.; Hirao, H.; Zhou, J. S. Chem.-Eur. J., 2013, 19, 6014.
doi: 10.1002/chem.201204427 |
|
(c) Phipps, R. J.; McMurray, L.; Ritter, S.; Duong, H. A.; Gaunt, M. J. J. Am. Chem. Soc. 2012, 134, 10773.
doi: 10.1021/ja3039807 |
|
(d) Artuso, E.; Barbero, M.; Degani, I.; Dughera, S.; Fochi, R. Tetrahedron 2006, 62, 3146.
doi: 10.1016/j.tet.2006.01.027 |
|
[16] |
Quasdorf, K. W.; Antoft-Finch, A.; Liu, P.; Silberstein, A. L.; Komaromi, A.; Blackburn, T.; Ramgren, S. D.; Houk, K. N.; Snieckus, V.; Garg, N. K. J. Am. Chem. Soc. 2011, 133, 6352.
doi: 10.1021/ja200398c pmid: 21456551 |
[1] | Wei Xu, Hongbin Zhai, Bin Cheng, Taimin Wang. Visible Light-Induced Pd-Catalyzed Heck Reactions [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3035-3054. |
[2] | Jun Lu, Qichuang Li, Renxiao Liang, Yixia Jia. Nickel-Catalyzed Intramolecular Dearomative Arylation of Pyridiniums and Quinoliniums [J]. Chinese Journal of Organic Chemistry, 2023, 43(5): 1875-1882. |
[3] | Yanyan Zhang, Zhuzhu Zhang, Shengqing Zhu, Lingling Chu. Recent Advances in Nickel Catalyzed Asymmetric Acylation Reactions [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1023-1035. |
[4] | Licheng Wu, Xianqing Wu, Jingping Qu, Yifeng Chen. Exploration of Quinim Ligand in Ni-Catalyzed Enantioselective Reductive Carbamoyl-Alkylation of Alkene [J]. Chinese Journal of Organic Chemistry, 2023, 43(12): 4239-4250. |
[5] | Yunpeng Qi, Dengkai Lin, Liang-An Chen. Research Progress on Reductive Acylation with Acyl-Ni as a Key Intermediate to Synthesize Ketones [J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3861-3875. |
[6] | Weilu Zhang, Shaowei Chen, Xiao Shen. Nickel-Catalyzed [4+2] Cyclization of Benzosilacyclobutenes and Acylsilanes [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3635-3643. |
[7] | Qi Sun, Zeying Sun, Ze Yu, Guangwei Wang. Nickel-Catalyzed Stereoselective Aryl-Difluoroalkylation of Alkynes [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2515-2520. |
[8] | Weiguo Yu, Lingna Wang, Xiaocong Yu, Shuping Luo. Fluorescent Dye/Nickel Synergistic Catalytic Decarboxylative Carbonylation Reaction [J]. Chinese Journal of Organic Chemistry, 2022, 42(4): 1216-1223. |
[9] | Yurong Zhang, Han Wang, Yongjun Mao, Shiliang Shi. Ni-Catalyzed Three-Component Coupling Reaction of Butadiene,Aldimines and Alkenylboronic Acids [J]. Chinese Journal of Organic Chemistry, 2022, 42(4): 1198-1209. |
[10] | Yuanyuan Ping, Haixia Song, Wangqing Kong. Recent Advances in Ni-Catalyzed Asymmetric Reductive Difunctionalization of Alkenes [J]. Chinese Journal of Organic Chemistry, 2022, 42(10): 3302-3321. |
[11] | Lei Xu, Fang Wang, Fan Chen, Shengqing Zhu, Lingling Chu. Recent Advances in Photoredox/Nickel Dual-Catalyzed Difunctionalization of Alkenes and Alkynes [J]. Chinese Journal of Organic Chemistry, 2022, 42(1): 1-15. |
[12] | Xiao Xiao, Jianchao Liu. Progress in the Synthesis of C(sp2)—C(sp3) Bond by Reductive Heck Reactions of Alkenes [J]. Chinese Journal of Organic Chemistry, 2021, 41(9): 3349-3365. |
[13] | Lingxiang Lian, Jingyi Yin, Caixia Lin, Keyin Ye, Yaofeng Yuan. Phosphine Oxide-Directed Palladium-Catalyzed Heck-Type Functionalization of o-Carboranes [J]. Chinese Journal of Organic Chemistry, 2021, 41(8): 3249-3255. |
[14] | Yu-Qing Li, Shi-Liang Shi. Nickel-Catalyzed Multicomponent Coupling of Butadiene, Aldehydes, Alkynes and Schwartz Reagent to Form 1,4-Dienes [J]. Chinese Journal of Organic Chemistry, 2021, 41(5): 1939-1948. |
[15] | Yuren Sun, Jiandong Liu, Quan Lin, Ken Yao, Weiqi Tong, Qun Qian. Facile Preparation of Aryl C-Glycosides by Nickel-Catalyzed Reductive Coupling of Glycosyl Halides with Aryl Halides [J]. Chinese Journal of Organic Chemistry, 2021, 41(4): 1551-1562. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||