Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (9): 3257-3267.DOI: 10.6023/cjoc202302026 Previous Articles Next Articles
Special Issue: 有机氟化学虚拟合辑
马虎, 黄丹凤*(), 王克虎, 唐朵朵, 冯杨, 任园园, 王君娇, 胡雨来*()
收稿日期:
2023-02-23
修回日期:
2023-05-07
发布日期:
2023-05-23
基金资助:
Hu Ma, Danfeng Huang(), Kehu Wang, Duoduo Tang, Yang Feng, Yuanyuan Reng, Junjiao Wang, Yulai Hu()
Received:
2023-02-23
Revised:
2023-05-07
Published:
2023-05-23
Contact:
E-mail: Supported by:
Share
Hu Ma, Danfeng Huang, Kehu Wang, Duoduo Tang, Yang Feng, Yuanyuan Reng, Junjiao Wang, Yulai Hu. Synthesis of 3-Trifluoromethylpyrazole Derivatives[J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3257-3267.
Entry | Molar ratio of 1a∶2a∶Base | Base | Time/h | Temp./℃ | Solvent | Isolated yield/% |
---|---|---|---|---|---|---|
1 | 1.0∶1.0∶1.0 | K2CO3 | 2 | 25 | CH3CN | 65 |
2 | 1.0∶1.0∶1.2 | K2CO3 | 2 | 25 | CH3CN | 70 |
3 | 1.0∶1.0∶1.5 | K2CO3 | 2 | 25 | CH3CN | 67 |
4 | 1.2∶1.0∶1.2 | K2CO3 | 2 | 25 | CH3CN | 79 |
5 | 1.3:1.0∶1.3 | K2CO3 | 4 | 25 | CH3CN | 84 |
6 | 1.5∶1.0∶1.5 | K2CO3 | 4 | 25 | CH3CN | 92 |
7 | 1.5∶1.0∶1.5 | Cs2CO3 | 2 | 25 | CH3CN | 46 |
8 | 1.5∶1.0∶1.5 | Na2CO3 | 9 | 25 | CH3CN | 38 |
9 | 1.5∶1.0∶1.5 | Et3N | 24 | 25 | CH3CN | 15 |
10 | 1.5∶1.0∶1.5 | DBU | 24 | 25 | CH3CN | N.R. |
11 | 1.5∶1.0∶1.5 | K2CO3 | 4 | 25 | THF | 84 |
12 | 1.5∶1.0∶1.5 | K2CO3 | 4 | 25 | 1,4-Dioxane | 64 |
13 | 1.5∶1.0∶1.5 | K2CO3 | 5 | 25 | Toluene | 76 |
14 | 1.5∶1.0∶1.5 | K2CO3 | 4 | 25 | DCM | 53 |
Entry | Molar ratio of 1a∶2a∶Base | Base | Time/h | Temp./℃ | Solvent | Isolated yield/% |
---|---|---|---|---|---|---|
1 | 1.0∶1.0∶1.0 | K2CO3 | 2 | 25 | CH3CN | 65 |
2 | 1.0∶1.0∶1.2 | K2CO3 | 2 | 25 | CH3CN | 70 |
3 | 1.0∶1.0∶1.5 | K2CO3 | 2 | 25 | CH3CN | 67 |
4 | 1.2∶1.0∶1.2 | K2CO3 | 2 | 25 | CH3CN | 79 |
5 | 1.3:1.0∶1.3 | K2CO3 | 4 | 25 | CH3CN | 84 |
6 | 1.5∶1.0∶1.5 | K2CO3 | 4 | 25 | CH3CN | 92 |
7 | 1.5∶1.0∶1.5 | Cs2CO3 | 2 | 25 | CH3CN | 46 |
8 | 1.5∶1.0∶1.5 | Na2CO3 | 9 | 25 | CH3CN | 38 |
9 | 1.5∶1.0∶1.5 | Et3N | 24 | 25 | CH3CN | 15 |
10 | 1.5∶1.0∶1.5 | DBU | 24 | 25 | CH3CN | N.R. |
11 | 1.5∶1.0∶1.5 | K2CO3 | 4 | 25 | THF | 84 |
12 | 1.5∶1.0∶1.5 | K2CO3 | 4 | 25 | 1,4-Dioxane | 64 |
13 | 1.5∶1.0∶1.5 | K2CO3 | 5 | 25 | Toluene | 76 |
14 | 1.5∶1.0∶1.5 | K2CO3 | 4 | 25 | DCM | 53 |
[1] |
Fustero S.; Simón-Fuentes A.; Delgado O.; Román R. Fluorinated Pyrazoles and Indazoles. In Fluorine in Heterocyclic Chemistry, Vol. 1, Ed: Nenajdenko, V., Springer, Cham, 2014.
|
[2] |
Mykhailiuk P. K. Chem. Rev. 2021, 121, 1670.
doi: 10.1021/acs.chemrev.0c01015 pmid: 33382252 |
[3] |
Zeng J.; Xu Z; Ma J.-A. Chin. J. Org. Chem. 2020, 40, 1105 (in Chinese.)
doi: 10.6023/cjoc201912024 |
(曾俊良, 许志红, 马军安, 有机化学, 2020, 40, 1105.)
doi: 10.6023/cjoc201912024 |
|
[4] |
Penning T. D.; Talley J. J.; Bertenshaw S. R.; Carter J. S.; Collins P. W.; Docter S.; Graneto M. J.; Lee L. F.; Malecha J. W.; Miyashiro J.M.; Rogers R. S.; Rogier D. J.; Yu, Stella S.; Anderson, Gary D.; Burton, E. G.; Cogburn, J. N.; Gregory, S. A.; Koboldt, C. M.; Perkins, W.E.; Seibert, K.; Veenhuizen, A. W.; Zhang, Y. Y.; Isakson, P. C. J. Med. Chem. 1997, 40, 1347.
pmid: 9135032 |
[5] |
Varnes J. G.; Wacker D. A.; Pinto D. J. P.; Orwat M. J.; Theroff J. P.; Wells B.; Galemo R. A.; Luettgen J. M.; Knabb R. M.; Bai S.; He K.; Lam P. Y. S.; Wexler R. R. Bioorg. Med. Chem. Lett. 2008, 18, 749.
doi: 10.1016/j.bmcl.2007.11.040 |
[6] |
Duan S.; Venkatraman S.; Hong X.-C.; Huang K.; Ulysse L.; Mobele B. I.; Smith A.; Lawless L.; Locke A.; Garigipati R. Org. Process Res. Dev. 2012, 16, 1787.
doi: 10.1021/op300262z |
[7] |
Link J. O.; Rhee M. S.; Tse W. C.; Zheng J.; Somoza J. R.; Rowe W.; Begley R.; Chiu A.; Mulato A.; Hansen D.; Singer E.; Tsai L. K.; Bam R. A.; Chou C.; Canales E.; Brizgys G.; Zhang J. R.; Li J.; Graupe M.; Morganelli P.; Liu Q.; Wu Q.; Halcomb R. L.; Saito R. D.; Schroeder S. D.; Lazerwith S. E.; Bondy S.; Jin D.; Hung M.; Novikov N.; Liu X.; Villaseñor A. G.; Cannizzaro C. E.; Hu E. Y.; Anderson R. L.; Appleby T. C.; Lu B.; Mwangi J.; Liclican A.; Niedziela-Majka A.; Papalia G. A.; Wong M. H.; Leavitt S. A.; Xu Y.; Koditek D.; Stepan G. J.; Yu H.; Pagratis N.; Clancy S.; Ahmadyar S.; Cai T. Z.; Sellers S.; Wolckenhauer S. A.; Ling J.; Callebaut C.; Margot N.; Ram R. R.; Liu Y.; Hyland R.; Sinclair G. I.; Ruane P. J.; Crofoot G. E.; McDonald C. K.; Brainard D. M.; Lad L.; Swaminathan S.; Sundquist W. I.; Sakowicz R.; Chester A. E.; Lee W. E.; Daar E. S.; Yant S. R.; Cihlar T. Nature 2020, 584, 614.
doi: 10.1038/s41586-020-2443-1 |
[8] |
Avenot H. F.; Thomas A.; Gitaitis R. D.; Langston Jr D. B.; Stevenson K. L. Pest. Manage. Sci. 2012, 68, 645.
doi: 10.1002/ps.2311 |
[9] |
Tanetani Y.; Kaku K.; Kawai K.; Fujioka T.; Shimizu T. Pestic. Biochem. Phys. 2009, 95, 47.
doi: 10.1016/j.pestbp.2009.06.003 |
[10] |
(a) Gnanasekaran P.; Yuan Y.; Lee C.; Zhou X.; Jen A. K. Y.; Chi Y. Inorg. Chem. 2019, 58, 10944.
doi: 10.1021/acs.inorgchem.9b01383 pmid: 31809032 |
(b) Yuan Y.; Gnanasekaran P.; Chen Y.; Lee G.; Ni S.; Lee C.-S.; Chi Y. Inorg. Chem. 2020, 59, 523.
doi: 10.1021/acs.inorgchem.9b02799 pmid: 31809032 |
|
(c) Liao J.; Chi Y.; Wang J.; Chen Z.; Tsai Z.; Hung W; Tseng M.-R.; Lee G. Inorg. Chem. 2016, 55, 6394.
doi: 10.1021/acs.inorgchem.6b00097 pmid: 31809032 |
|
(d) Guo B.; Yu T.; Li H.; Zhang S.; Braunstein P.; Young D. J.; Li H.; Lang J. ChemCatChem 2019, 11, 2500.
doi: 10.1002/cctc.v11.10 pmid: 31809032 |
|
[11] |
Recent work: (a) Pianoski K. E.; Poletto, J.; Vieira da Silva, M. J.; Ascencio Camargo, J. N.; Jacomini, A. P.; Goncalves, D. S.; Back, ̧D. F. Moura, S.; Rosa, F. A. Org. Biomol. Chem. 2020, 18, 2524.
doi: 10.1039/d0ob00319k pmid: 33423495 |
(b) Muzalevskiy V. M.; Sizova Z. A.; Panyushkin V. V.; Chertkov V. A.; Khrustalev V. N.; Nenajdenko V. G. J. Org. Chem. 2021, 86, 2385.
doi: 10.1021/acs.joc.0c02516 pmid: 33423495 |
|
(c) Wan C.; Pang J.; Jiang W.; Zhang X.; Hu X. J. Org. Chem. 2021, 86, 4557.
doi: 10.1021/acs.joc.0c02980 pmid: 33423495 |
|
[12] |
Recent work: (a) Kowalczyk A.; Utecht-Jarzyńska, G.; Mlostoń, G.; Jasiński, M. Org. Lett. 2022, 24, 2499.
doi: 10.1021/acs.orglett.2c00521 pmid: 35343703 |
(b) Zhu C.; Zeng H.; Liu C.; Cai Y.; Fang X.; Jiang H. Org. Lett. 2020, 22, 809.
doi: 10.1021/acs.orglett.9b04228 pmid: 35343703 |
|
(c) Wang H.; Ning Y.; Sun Y.; Sivaguru P.; Bi X. Org. Lett. 2020, 22, 2012.
doi: 10.1021/acs.orglett.0c00395 pmid: 35343703 |
|
(d) Peng X.; Huang D.; Wang K.-H.; Wang Y.; Wang J.; Su Y.; Hu Y. Org. Biomol. Chem. 2017, 15, 6214.
doi: 10.1039/C7OB01299C pmid: 35343703 |
|
[13] |
(a) Yang Y.; Hu Z.; Li R.; Chen Y.; Zhan Z. Org. Biomol. Chem. 2018, 16, 197.
doi: 10.1039/C7OB02576A |
(b) Wen J.; Ding C.; Ding Z.; Li T.; Zhan Z. Eur. J. Org. Chem. 2015, 2015, 5230.
doi: 10.1002/ejoc.v2015.23 |
|
(c) Harnisch F.; Galeta J.; Harakat D.; Potaćek M.; Bouillon J. J. Fluorine Chem. 2014, 158, 38.
doi: 10.1016/j.jfluchem.2013.12.004 |
|
(d) Wen J.; Tang H.; Xiong K.; Ding Z.; Zhan Z. Org. Lett. 2014, 16, 5940.
doi: 10.1021/ol502968c |
|
[14] |
Kino T.; Nagase Y.; Ohtsuka Y.; Yamamoto K.; Uraguchi D.; Tokuhisa K.; Yamakawa T. J. Fluorine Chem. 2010, 131, 98.
doi: 10.1016/j.jfluchem.2009.09.007 |
[15] |
Zhang X.; Wang J.; Wan Z. Org. Lett. 2015, 17, 2086.
doi: 10.1021/acs.orglett.5b00619 |
[16] |
Le C.; Chen T. Q.; Liang T.; Zhang P.; MacMillan D. W. C. Science 2018, 360, 1010.
doi: 10.1126/science.aat4133 |
[17] |
Karmel C.; Rubel C. Z.; Kharitonova E. V.; Hartwig J. F. Angew. Chem., Int. Ed. 2020, 59, 6074.
doi: 10.1002/anie.201916015 pmid: 31968139 |
[18] |
Ji G.; Wang X.; Zhang S.; Xu Y.; Ye Y.; Li M.; Zhang Y.; Wang J. Chem. Commun. 2014, 50, 4361.
doi: 10.1039/C4CC01280A |
[19] |
(a) Martins M. A. P.; Marzari M. R. B.; Frizzo C. P.; Zanatta M.; Buriol L.; Andrade V. P.; Zanatta N.; Bonacorso H. G.; Eur. J. Org. Chem. 2012, 2012, 7112.
doi: 10.1002/ejoc.201201111 pmid: 18399658 |
(b) Sloop J. C.; Lechner B.; Washington G.; Bumgardner C. L.; Loehle W. D.; Creasy W. Int. J. Chem. Kinet. 2008, 40, 370.
doi: 10.1002/kin.v40:7 pmid: 18399658 |
|
(c) Sloop J. C.; Bumgardner C. L.; Loehle W. D. J. Fluorine Chem. 2002, 118, 135.
doi: 10.1016/S0022-1139(02)00221-X pmid: 18399658 |
|
(d) Fustero S.; Román R.; Sanz-Cervera J. F.; Simón-Fuentes A.; Cuñat A. C.; Villanova S.; Murguía M. J. Org. Chem. 2008, 73, 3523.
doi: 10.1021/jo800251g pmid: 18399658 |
|
(e) Norris T.; Colon-Cruz R.; Ripin D. H. B. Org. Biomol. Chem. 2005, 3, 1844.
doi: 10.1039/b500413f pmid: 18399658 |
|
[20] |
Selected review: (a) Mykhailiuk P. K. Chem. Rev. 2020, 120, 12718.
doi: 10.1021/acs.chemrev.0c00406 pmid: 28328171 |
Selected examples: (b) Li F.; Nie J.; Sun L.; Zheng Y.; Ma J.-A. Angew. Chem., Int. Ed. 2013, 52, 6255.
doi: 10.1002/anie.201301870 pmid: 28328171 |
|
(c) Slobodyanyuk E. Y.; Artamonov O. S.; Shishkin O. V.; Mykhailiuk P. K. Eur. J.Org. Chem. 2014, 2014, 2487.
pmid: 28328171 |
|
(d) Britton J.; Jamison T. F. Angew. Chem., Int. Ed. 2017, 56, 8823.
doi: 10.1002/anie.201704529 pmid: 28328171 |
|
(e) Chen Z.; Zheng Y.; Ma J.-A. Angew. Chem., Int. Ed. 2017, 56, 4569.
doi: 10.1002/anie.201700955 pmid: 28328171 |
|
(f) Lv S.; Zhou H.; Yu X.; Xu Y.; Zhu H.; Wang M.; Liu H.; Dai Z.; Sun G.; Gong X.; Sun X.; Wang L. Commun. Chem. 2019, 2, 69.
doi: 10.1038/s42004-019-0168-6 pmid: 28328171 |
|
[21] |
Gladow D.; Doniz-Kettenmann S.; Reissig H.-U. Helv. Chim. Acta 2014, 97, 808.
doi: 10.1002/hlca.v97.6 |
[22] |
(a) Oh L. M. Tetrahedron Lett. 2006, 47, 7943.
doi: 10.1016/j.tetlet.2006.08.138 pmid: 29392253 |
(b) Utecht G.; Fruzinski A.; Jasiński M. Org. Biomol. Chem. 2018, 16, 1252.
doi: 10.1039/c7ob03126b pmid: 29392253 |
|
[23] |
Lee S.; Kim C.; Ann J.; Thorat S. A.; Kim E.; Park J.; Choi S.; Blumberg P. M.; Frank-Foltyn R.; Bahrenberg G.; Stockhausen H.; Christoph T.; Lee J. Bioorg. Med. Chem. Lett. 2017, 27, 4383.
doi: 10.1016/j.bmcl.2017.08.020 |
[24] |
Tian Y.; Li J; Zhang F.; Ma J.-A. Adv. Synth. Catal. 2021, 363, 2093.
doi: 10.1002/adsc.v363.8 |
[25] |
Kowalczyk A.; Utecht-Jarzyńska G.; Mlostoń G.; Jasiński M. Org. Lett. 2022, 24, 13, 2499.
|
[26] |
Wang K.-H.; Liu H.; Liu X.; Bian C.; Wang J.; Su Y.; Huang D.; Hu Y. Asian. J. Org. Chem. 2022, 11: e202200103.
doi: 10.1002/ajoc.v11.6 |
[27] |
Tanaka K.; Maeno S.; Mitsuhashi K. Chem. Lett. 1982, 543.
|
[28] |
Kowalczyk A.; Utecht-Jarzyńska G.; Mlostoń G.; Jasiński M. J. Fluorine Chem. 2021, 241, 109691.
doi: 10.1016/j.jfluchem.2020.109691 |
[29] |
(a) Shawali A. S. Chem. Rev. 1993, 93, 2731.
doi: 10.1021/cr00024a007 pmid: 25961125 |
(b) Hashimoto T.; Maruoka K. Chem. Rev. 2015, 115, 5366.
doi: 10.1021/cr5007182 pmid: 25961125 |
|
[30] |
(a) Han T.; Wang K.-H.; Yang M.; Zhao P.; Wang F.; Wang J.; Huang D.; Hu Y. J. Org. Chem. 2022, 87, 498.
doi: 10.1021/acs.joc.1c02521 |
(b) Ren Y.; Ma R.; Feng Y.; Wang K.-H.; Wang J.; Huang D.; Lv X.; Hu Y. Asian J. Org. Chem. 2022, e202200438.
|
|
(c) Su Y.; Zhao Y.; Chang B.; Zhao X.; Zhang R.; Liu X.; Huang D.; Wang K.-H.; Huo C.; Hu Y. J. Org. Chem. 2019, 84, 6719.
doi: 10.1021/acs.joc.9b00434 |
|
[31] |
Bégué D.; Qiao G.-G. J. Am. Chem. Soc. 2012, 134, 5339.
doi: 10.1021/ja2118442 |
[1] | Lüyin Zheng, Yihan Wang, Liuhuan Cai, Wei Guo. Progress in C—CF3/C—N Bond Formation Reactions of Alkenes Involving in Free Radicals [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4078-4098. |
[2] | Zhongwen Sun, Congcong Zhang, Lijun Chen, Huiding Xie, Bo Liu, Dandan Liu. Recent Advances in Catalytic Asymmetric Reactions Involving Trifluoroethyl Ketimines [J]. Chinese Journal of Organic Chemistry, 2021, 41(5): 1789-1803. |
[3] | Haojie Ma, Zhou Sun, Jinlei Liu, Xia Zhang, Huali Cui, Yuqi Zhang, Jijiang Wang. CBr4-Mediated Intermolecular Cyclization Reaction: Efficient Synthesis of Substituted N-Acylpyrazoles [J]. Chinese Journal of Organic Chemistry, 2021, 41(11): 4353-4360. |
[4] | Zeng Junliang, Xu Zhihong, Ma Junan. Construction of 3,4-Disubstituted-3-(difluoromethyl)pyrazoles [J]. Chinese Journal of Organic Chemistry, 2020, 40(5): 1105-1116. |
[5] | Su Shimiao, Zhu Mo, Zhang Daqiang, Yuan Dekai. Synthesis and Biological Activity Study of Novel Cyano-containing Multi-substituted Pyrazoles Obtained via Strecker Reaction [J]. Chin. J. Org. Chem., 2019, 39(7): 2026-2034. |
[6] | Zhang Faguang, Peng Xing, Ma Jun'an. Recent Advances in the Synthesis of CF3-Substituted Triazoles and Tetrazoles [J]. Chin. J. Org. Chem., 2019, 39(1): 109-116. |
[7] | Cui Tao, Li Congxiang, Li Ming, Wen Lirong. Efficient Copper-Catalyzed Coupling Reaction for the Synthesis of Benzo[4,5]imidazo[1,2-b]pyrazoles [J]. Chin. J. Org. Chem., 2017, 37(6): 1487-1493. |
[8] | Liu Xunshen, Li Meimei, You Jun, Liu Bo. Asymmetric 1,3-Dipolar Cycloaddition Reaction of C,N-Diarylnitrone with N-α,β-Unsaturated Acylpyrazoles Catalyzed by Ni-DBFOX/Ph [J]. Chin. J. Org. Chem., 2017, 37(1): 86-91. |
[9] | Li Yufeng, Huang Jiawei, Gu Jiachao, Huang Hao, Niu Changsheng, Ma Hongfei. Sequential Three-Component Reactions for the Assembly of Functionalized Pyrazoles [J]. Chin. J. Org. Chem., 2016, 36(3): 520-526. |
[10] | Zheng Chunzhi, Xu Xiaodan, Wang Yazhen, Zhao Dejian, Zhang Jizhen. Synthesis of 1,4,5-Triarylpyrazoles from the Addition Products of α,β-Chalcones with New Ion-Supported [Hydrox-yl(tosyloxy)iodo]benzenes [J]. Chin. J. Org. Chem., 2015, 35(5): 1137-1145. |
[11] | Li Xiaojun, Guo Hongyun . One-Pot Synthesis of 1,4-Dihydropyrano[2,3-c]pyrazoles Catalyzed by Basic Ionic Liquids [J]. Chin. J. Org. Chem., 2012, 32(01): 127-132. |
[12] | WANG Hui-Yan, ZOU Yi, TAO Chuan-Zhou. One-Pot Four-Component Synthesis of Dihydropyrano- [2,3-c]pyrazoles under Ultrasound Irradiations [J]. Chin. J. Org. Chem., 2011, 31(12): 2161-2166. |
[13] | JING Xiao-Bi, WANG Qing, BI Xiao-Xin, WU Lin-Tao, YAN Chao-Guo. Synthesis and Characterization of 2-Phenyl- 6-hydrazine-3-pyridazione Derivatives [J]. Chin. J. Org. Chem., 2010, 30(06): 904-907. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||