Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (9): 3055-3066.DOI: 10.6023/cjoc202303036 Previous Articles Next Articles
鄢伯钰a, 吴阶良a, 邓金飞a, 陈丹a, 叶秀深b, 姚秋丽a,b,*()
收稿日期:
2023-03-23
修回日期:
2023-05-04
发布日期:
2023-06-06
基金资助:
Boyu Yana, Jieliang Wua, Jinfei Denga, Dan Chena, Xiushen Yeb, Qiuli Yaoa,b()
Received:
2023-03-23
Revised:
2023-05-04
Published:
2023-06-06
Contact:
E-mail: Supported by:
Share
Boyu Yan, Jieliang Wu, Jinfei Deng, Dan Chen, Xiushen Ye, Qiuli Yao. Recent Progress in Light-Driven Direct Dehydroxylation and Derivation of Alcohols[J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3055-3066.
[1] |
(a) Modak A.; Maiti D. Org. Biomol. Chem. 2016, 14, 21.
doi: 10.1039/C5OB01949D |
(b) Anwar K.; Merkens K.; Aguilar Troyano F. J.; Gómez-Suárez A. Eur. J. Org. Chem. 2022, 2022, 202200330.
|
|
[2] |
Haynes W. M. Handbook of Chemistry and Physics, 93rd ed., CRC Press, 2012.
|
[3] |
(a) Ren L.; Ran M.; He J.; Qian Y.; Yao Q. Chin. J. Org. Chem. 2019, 39, 1583. (in Chinese)
doi: 10.6023/cjoc201812042 pmid: 31116479 |
(任林静, 冉茂刚, 何佳芯, 钱燕, 姚秋丽, 有机化学, 2019, 39, 1583.)
doi: 10.6023/cjoc201812042 pmid: 31116479 |
|
(b) Leifert D.; Studer A. Angew. Chem., Int. Ed. 2020, 59, 74.
doi: 10.1002/anie.201903726 pmid: 31116479 |
|
(c) Yan B.; Zhou Y.; Wu J.; Ran M.; Li H.; Yao Q. Org. Chem. Front. 2021, 8, 5244.
doi: 10.1039/D1QO00978H pmid: 31116479 |
|
(d) Meng J.; Zhou Y.; Gu J.; Deng J.; Zheng Q.; Ye X.; Yao Q. J. Org. Chem. 2023, 88, 1855.
doi: 10.1021/acs.joc.2c02470 pmid: 31116479 |
|
(e) Wu J.; Yan B.; Meng J.; Yang E.; Ye X.; Yao Q. Org. Biomol. Chem. 2022, 20, 8559.
doi: 10.1039/D2OB90149H pmid: 31116479 |
|
[4] |
Herrmann J. M.; König B. Eur. J. Org. Chem. 2013, 2013, 7017.
doi: 10.1002/ejoc.v2013.31 |
[5] |
(a) Mao G.; Jia B.; Wang C. Chin. J. Org. Chem. 2015, 35, 284. (in Chinese)
doi: 10.6023/cjoc201409027 |
(毛国梁, 贾冰, 王从洋, 有机化学, 2015, 35, 284.)
doi: 10.6023/cjoc201409027 |
|
(b) Li C.; Zhang Q.; Fu Y. Acta Chim. Sinica 2018, 76, 501. (in Chinese)
doi: 10.6023/A18040138 |
|
(李翠, 张琪, 傅尧, 有机化学, 2018, 76, 501.)
|
|
(c) Pichon M. M.; Hazelard D.; Compain P. Eur. J. Org. Chem. 2019, 2019, 6320.
doi: 10.1002/ejoc.201900838 |
|
[6] |
(a) Liu F.; Jiang H. J.; Zhou Y.; Shi Z. J. Chin. J. Chem. 2020, 38, 855.
doi: 10.1002/cjoc.v38.8 |
(b) Qiu Z.; Li C. J. Chem. Rev. 2020, 120, 10454.
doi: 10.1021/acs.chemrev.0c00088 |
|
[7] |
Gao J.; Feng J.; Du D. Chem. Asian J. 2020, 15, 3637.
doi: 10.1002/asia.v15.22 |
[8] |
Nguyen J. D.; Reiss B.; Dai C.; Stephenson C. R. Chem. Commun. 2013, 49, 4352.
doi: 10.1039/C2CC37206A |
[9] |
Uranga J. G.; Chiosso A. F.; Santiago A. N. RSC Adv. 2013, 3, 11493.
doi: 10.1039/c3ra40343b |
[10] |
McCallum T.; Slavko E.; Morin M.; Barriault L. Eur. J. Org. Chem. 2015, 2015, 81.
doi: 10.1002/ejoc.v2015.1 |
[11] |
Takada Y.; Caner J.; Kaliyamoorthy S.; Naka H.; Saito S. Chem. Eur. J. 2017, 23, 18025.
doi: 10.1002/chem.v23.71 |
[12] |
Stache E. E.; Ertel A. B.; Tomislav R.; Doyle A. G. ACS Catal. 2018, 8, 11134.
doi: 10.1021/acscatal.8b03592 pmid: 31367474 |
[13] |
Cao D.; Chen Z.; Lv L.; Zeng H.; Peng Y.; Li C. J. iScience 2020, 23, 101419.
doi: 10.1016/j.isci.2020.101419 |
[14] |
Ran C.-K.; Niu Y.-N.; Song L.; Wei M.-K.; Cao Y.-F.; Luo S.-P.; Yu Y.-M.; Liao L.-L.; Yu D.-G. ACS Catal. 2022, 12, 18.
doi: 10.1021/acscatal.1c04921 |
[15] |
Li W. D.; Wu Y.; Li S. J.; Jiang Y. Q.; Li Y. L.; Lan Y.; Xia J. B. J. Am. Chem. Soc. 2022, 144, 8551.
doi: 10.1021/jacs.1c12463 |
[16] |
Fan Z.; Chen S.; Zou S.; Xi C. ACS Catal. 2022, 12, 2781.
doi: 10.1021/acscatal.2c00418 |
[17] |
Dai C.; Narayanam J. M.; Stephenson C. R. Nat. Chem. 2011, 3, 140.
doi: 10.1038/nchem.949 |
[18] |
Xue W.; Yuan X.; Cheng S.; Shi Y. Synthesis 2014, 46, 331.
doi: 10.1055/s-00000084 |
[19] |
Zhao Y.; Antonietti M. ChemPhotoChem 2018, 2, 720.
doi: 10.1002/cptc.v2.8 |
[20] |
Mohite A. R.; Phatake R. S.; Dubey P.; Agbaria M.; Shames A. I.; Lemcoff N. G.; Reany O. J. Org. Chem. 2020, 85, 12901.
doi: 10.1021/acs.joc.0c01431 |
[21] |
Tomar P.; Braun T.; Kemnitz E. Chem. Commun. 2018, 54, 9753.
doi: 10.1039/C8CC05494K |
[22] |
Barreiro E. J.; Kummerle A. E.; Fraga C. A. Chem. Rev. 2011, 111, 5215.
doi: 10.1021/cr200060g pmid: 21631125 |
[23] |
(a) Stermitz F. R.; Seiber R. P.; Nicodem D. E. J. Org. Chem. 1968, 33, 1136.
doi: 10.1021/jo01267a046 |
(b) Stermitz F. R.; Wei C. C.; O'Donnell C. M. J. Am. Chem. Soc. 1970, 92, 2745.
doi: 10.1021/ja00712a027 |
|
(c) Takeuchi F.; Sugiyama T.; Fujimori T.; Seki K.; Harada Y.; Sugimori A. Bull. Chem. Soc. Jpn 1974, 47, 1245.
doi: 10.1246/bcsj.47.1245 |
|
(d) Mariano P. S. Tetrahedron 1983, 39, 3845.
doi: 10.1016/S0040-4020(01)90889-0 |
|
(e) Padwa A. Chem. Rev. 2002, 77, 37.
doi: 10.1021/cr60305a004 |
|
[24] |
Jin J.; MacMillan D. W. C. Nature 2015, 525, 87.
doi: 10.1038/nature14885 |
[25] |
Nacsa E. D.; MacMillan D. W. C. J. Am. Chem. Soc. 2018, 140, 3322.
doi: 10.1021/jacs.7b12768 pmid: 29400958 |
[26] |
Dong Z.; MacMillan, D. W. C. Nature 2021, 598, 451.
doi: 10.1038/s41586-021-03920-6 |
[27] |
Sakai H. A.; MacMillan D. W. C. J. Am. Chem. Soc. 2022, 144, 6185.
doi: 10.1021/jacs.2c02062 pmid: 35353531 |
[28] |
Intermaggio N. E.; Millet A.; Davis D. L.; MacMillan D. W. C. J. Am. Chem. Soc. 2022, 144, 11961.
doi: 10.1021/jacs.2c04807 pmid: 35786873 |
[29] |
Wang J. Z.; Sakai H. A.; MacMillan D. W. C. Angew. Chem., Int. Ed. 2022, 61, e202207150.
doi: 10.1002/anie.v61.35 |
[30] |
Guo H. M.; Wu X. Nat. Commun. 2021, 12, 5365.
doi: 10.1038/s41467-021-25702-4 |
[31] |
Guo H. M.; He B. Q.; Wu X. Org. Lett. 2022, 24, 3199.
doi: 10.1021/acs.orglett.2c00889 |
[32] |
Zhang W.; Ning S.; Li Y.; Wu X. Chem. Commun. 2022, 58, 12843.
doi: 10.1039/D2CC05098F |
[33] |
Bao W. H.; Wu X. J. Org. Chem. 2023, 88, 3975.
doi: 10.1021/acs.joc.2c03043 |
[34] |
Tan C. Y.; Kim M.; Park I.; Kim Y.; Hong S. Angew. Chem., Int. Ed. 2022, 61, e202213857.
doi: 10.1002/anie.v61.51 |
[35] |
Liu W.; Yang X.; Zhou Z.-Z.; Li C.-J. Chem 2017, 2, 688.
doi: 10.1016/j.chempr.2017.03.009 |
[36] |
Zhang F.; Hou H.; Xu X.; Chen Z.; Ke F. Chin. J. Org. Chem. 2021, 41, 833. (in Chinese)
doi: 10.6023/cjoc202007027 |
(张帆, 侯慧青, 许秀枝, 陈志涛, 柯方, 有机化学, 2021, 41, 833.)
doi: 10.6023/cjoc202007027 |
|
[37] |
Xie Z.; Lan J.; Zhu H.; Lei G.; Jiang G.; Le Z. Chin. Chem. Lett. 2021, 32, 1427.
doi: 10.1016/j.cclet.2020.09.059 |
[38] |
Wang M.; Ren J.; Xiao Q.; Song A.; Yu S.; Wang R.; Xing L. Catal. Lett. 2023, doi:10.1007/s10562-022-04266-y.
|
[1] | Chun-Xia Cheng, Lu-Ping Wu, Feng Sha, Xin-Yan Wu. Enantioselective Vinylogous Allylic Alkylation of Coumarins with Morita-Baylis-Hillman Carbonates Catalyzed by Chiral Phosphine-Amide [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3188-3195. |
[2] | Xiao Song, Jing Qing, Jun Li, Xuelei Jia, Fusong Wu, Junrong Huang, Jian Jin, Hengzhi You. Copper-Catalyzed Asymmetric Allyl Alkylation Using Grignard Reagents under Continuous Flow [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3174-3179. |
[3] | Yingke Feng, He Wang, Mengxing Cui, Ran Sun, Xin Wang, Yang Chen, Lei Li. Visible-Light-Induced Difluoroalkylated Cyclization of Novel Functionalized Aromatic Isocyanides [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2913-2925. |
[4] | Xiaoyu Zhang, Xinyan Li, Bing Cui, Zhihui Shao, Mingqin Zhao. Design, Synthesis and Antioxidant Activity of Tetrahydro-β-carbolines [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2885-2894. |
[5] | Xiangping Chen, Chenxiang Meng, Mengna Li, Shangmin Chu, Xinxin Zhu, Kai Xu, Lantao Liu, Tao Wang, Fenghua Zhang, Fei Li. Fe-Catalyzed Synthesis of Sulfide-Based Aromatic Primary Amines in Water Promoted by Sodium-Ascorbate [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2800-2807. |
[6] | Fen Huang, Weiwei Luo, Jun Zhou. Research Progress of Polychloroalkylation Based on C—H Bond Cleavage [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2368-2390. |
[7] | Yanhua Gao, Yinpan Zhang, Yan Zhang, Tao Song, Yong Yang. Visible-Light-Induced Aerobic Oxidation of Alcohols over Surface Oxygen Vacancies-Enriched Nb2O5 [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2572-2579. |
[8] | Linlin Du, Hua Zhang. Photochemical and Electrochemical Borylation Involving Aryl and Alkyl Compounds [J]. Chinese Journal of Organic Chemistry, 2023, 43(5): 1726-1741. |
[9] | Li Sun, Guoxin Song, Jiale Han, Jiyu Li, Yue Zhao, Luhua Yang, Feng Zhang, Kun Zhao, Biming Mao. Electrochemical Allylic Alkylation of Morita-Baylis-Hillman Adducts and N-Hydroxyphthalimide Esters towards C(sp3)—C(sp3) Bond Formation [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1574-1583. |
[10] | Miaomiao Zhang, Rong Chen, Hongmei Jiao, Haojie Ma, Bo Han, Yuqi Zhang, Jijiang Wang. MgCl2-Catalyzed Chemoselective Reduction of Aldehydes, Ketones and Imines [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1462-1471. |
[11] | Jinxiao Zhao, Tonghui Wei, Sen Ke, Yi Li. Visible Light-Catalyzed Synthesis of Difluoroalkylated Polycyclic Indoles [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1102-1114. |
[12] | Jiantao Zhang, Yawen Deng, Nuolin Mo, Lianfen Chen. Advances in Radical Mediated 1,2-Aryl Migration Reactions of α,α-Diarylallyl Alcohols [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 426-435. |
[13] | Guanghui Shi, Yunzhe Du, Yuanyuan Gao, Huijie Jia, Hailong Hong, Limin Han, Ning Zhu. Reduction of Nitro Group by Sulfide and Its Applications in Amine Synthesis [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 491-502. |
[14] | Peng Zhou, Weiming Zhu, Jiantao Zhang, Duoduo Xiao, Xiangfeng Guo, Weibing Liu. Cobalt-Catalyzed Oxyalkylation Reaction of Styrenes: Rapid Access to α-Alkyl Substituted Acetophenone Derivatives [J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3939-3944. |
[15] | Yushan Zhang, Zhen Huan, Jindong Yang, Jinpei Cheng. Recent Advances in Hydrogen Transfer Reactivities of N-Heterocyclic Phosphines [J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3806-3825. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||