Chinese Journal of Organic Chemistry ›› 2024, Vol. 44 ›› Issue (6): 1831-1852.DOI: 10.6023/cjoc202401004 Previous Articles Next Articles
REVIEWS
邹震雷a,b,†, 李和寅b,†, 黄梦君b, 沈胤朴b, 刘继阳b, 王之兆b, 张为钢b,*(), 王毅b,*(), 潘毅b
收稿日期:
2024-01-05
修回日期:
2024-02-02
发布日期:
2024-02-27
作者简介:
基金资助:
Zhenlei Zoua,b,†, Heyin Lib,†, Mengjun Huangb, Yinpu Shenb, Jiyang Liub, Zhizhao Wangb, Weigang Zhangb,*(), Yi Wangb,*(), Yi Panb,*
Received:
2024-01-05
Revised:
2024-02-02
Published:
2024-02-27
Contact:
* E-mail: About author:
Supported by:
Share
Zhenlei Zou, Heyin Li, Mengjun Huang, Yinpu Shen, Jiyang Liu, Zhizhao Wang, Weigang Zhang, Yi Wang, Yi Pan. Recent Advances in Conversion and Use of Inert Fluorinated Greenhouse Gases[J]. Chinese Journal of Organic Chemistry, 2024, 44(6): 1831-1852.
[1] |
(a) Yang, X.; Wu, T.; Phipps, R. J.; Toste, F. D. Chem. Rev. 2015, 115, 826.
|
(b) Ni, C.; Hu, J. Chem. Soc. Rev. 2016, 45, 5441.
|
|
(c) Ma, J.-A.; Cahard, D. Chem. Rev. 2008, 108, PR1.
|
|
(d) Alonso, C.; Marigorta, E. Martínez, de; Rubiales, G.; Palacios, F. Chem. Rev. 2015, 115, 1847.
|
|
(e) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.
|
|
(f) Zou, Z.; Zhang, W.; Wang, Y.; Pan, Y. Org. Chem. Front. 2021, 8, 2786.
|
|
[2] |
(a) Ma, T.; Wu, J.; Hu, D.; Ye, T.; Li, M.; Wang, T.; Zhang, Y.; Yuan, M. Atmosphere 2023, 14, 817.
|
(b) Fu, W. C.; MacQueen, P. M.; Jamison, T. F. Chem. Soc. Rev. 2021, 50, 7378.
|
|
(c) Harmsen, M.; Student, J.; Kroeze, C. J. Integr. Environ. Sci. 2020, 17, i-viii.
|
|
(d) Choi, S.-S.; Park, D.-W.; Watanabe, T. Nucl. Eng. Technol. 2012, 44, 21.
|
|
[3] |
Feng, Z.; Min, Q.-Q.; Fu, X.-P.; An, L.; Zhang, X. Nat. Chem. 2017, 9, 918.
doi: 10.1038/nchem.2746 pmid: 28837166 |
[4] |
Luo, Y.-P.; Jiang, L.-L.; Wang, G.-D.; Chen, Q.; Yang, G.-F. J. Agric. Food Chem. 2008, 56, 2118.
|
[5] |
Hine, J.; Porter, J. J. J. Am. Chem. Soc. 1957, 79, 5407.
|
[6] |
Miller, T. G.; Thanassi, J. W. J. Org. Chem. 1960, 25, 2009.
|
[7] |
Moore, G. G. I. J. Org. Chem. 1979, 44, 1708.
|
[8] |
He, Z.; Tan, P.; Ni, C.; Hu, J. Org. Lett. 2015, 17, 1838.
|
[9] |
Zhu, D.; Hong, X.; Li, D.; Lu, L.; Shen, Q. Org. Process Res. Dev. 2017, 21, 1383.
|
[10] |
Nawrot, E.; Jonczyk, A. J. Org. Chem. 2007, 72, 10258.
|
[11] |
Wang, F.; Huang, W.; Hu, J. Chin. J. Chem. 2011, 29, 2717.
|
[12] |
Levterov, V.; Grygorenko, O.; Mykhailiuk, P.; Tolmachev, A. Synthesis 2011, 2011, 1243.
|
[13] |
Hong, Z.; Hou, X.; Zhao, R.; Li, J.; Pawluczyk, J.; Wang, B.; Kempson, J.; Khandelwal, P.; Smith, L. M.; Glunz, P.; Mathur, A. J. Fluorine Chem. 2020, 234, 109514.
|
[14] |
Fu, W. C.; Jamison, T. F. Angew. Chem., Int. Ed. 2020, 59, 13885.
|
[15] |
Yu, J.; Zhang, X.; Wu, X.; Liu, T.; Zhang, Z.-Q.; Wu, J.; Zhu, C. Chem 2023, 9, 472.
|
[16] |
Grudzień, K.; Basak, T.; Barbasiewicz, M.; Wojciechowski, T. M.; Fedoryński, M. J. Fluorine Chem. 2017, 197, 106.
|
[17] |
Feng, Z.; Xiao, Y.-L.; Zhang, X. Acc. Chem. Res. 2018, 51, 2264.
|
[18] |
Zhang, X.; Sun, S.; Sang, Y.; Xue, X.; Min, Q.; Zhang, X. Angew. Chem., Int. Ed. 2023, 62, e202306501.
|
[19] |
Zhang, X.-Y.; Fu, X.-P.; Zhang, S.; Zhang, X. CCS Chem. 2020, 2, 293.
|
[20] |
Xu, C.; Guo, W.-H.; He, X.; Guo, Y.-L.; Zhang, X.-Y.; Zhang, X. Nat. Commun. 2018, 9, 1170.
|
[21] |
Peng, L.; Wang, H.; Guo, C. J. Am. Chem. Soc. 2021, 143, 6376.
|
[22] |
Haufe, G. Science 2012, 338, 1298.
|
[23] |
(a) Ruppert, I.; Schlich, K.; Volbach, W. Tetrahedron Lett. 1984, 25, 2195.
|
(b) Prakash, G. K. S.; Krishnamurti, R.; Olah, G. A. J. Am. Chem. Soc. 1989, 111, 393.
|
|
[24] |
Shono, T.; Ishifune, M.; Okada, T.; Kashimura, S. J. Org. Chem. 1991, 56, 2.
|
[25] |
(a) Folleas, B.; Marek, I.; Normant, J.-F.; Saint-Jalmes, L. Tetrahedron 2000, 56, 275.
|
(b) Zanardi, A.; Novikov, M. A.; Martin, E.; Benet-Buchholz, J.; Grushin, V. V. J. Am. Chem. Soc. 2011, 133, 20901.
|
|
[26] |
Xiang, J.-X.; Ouyang, Y.; Xu, X.-H.; Qing, F.-L. Angew. Chem., Int. Ed. 2019, 58, 10320.
|
[27] |
Kawai, H.; Yuan, Z.; Tokunaga, E.; Shibata, N. Org. Biomol. Chem. 2013, 11, 1446.
|
[28] |
Geri, J. B.; Szymczak, N. K. J. Am. Chem. Soc. 2017, 139, 9811.
|
[29] |
Lu, Z.; Wang, L.; Hughes, M.; Smith, S.; Shen, Q. Org. Lett. 2024, 26, 2773.
|
[30] |
Lekkala, R.; Lekkala, R.; Moku, B.; akesh, K. P. R; Qin, H.-L. Org. Chem. Front. 2019, 6, 3490.
|
[31] |
Pridgen, L.; Huang, N. G. K. Tetrahedron Lett. 1998, 39, 8421.
|
[32] |
Liang, Q.; Xing, P.; Huang, Z.; Dong, J.; Sharpless, K. B.; Li, X.; Jiang, B. Org. Lett. 2015, 17, 1942.
|
[33] |
Hanley, P. S.; Clark, T. P.; Krasovskiy, A. L.; Ober, M. S.; O’Brien, J. P.; Staton, T. S. ACS Catal. 2016, 6, 3515.
|
[34] |
Schimler, S. D.; Cismesia, M. A.; Hanley, P. S.; Froese, R. D. J.; Jansma, M. J.; Bland, D. C.; Sanford, M. S. J. Am. Chem. Soc. 2017, 139, 1452.
doi: 10.1021/jacs.6b12911 pmid: 28111944 |
[35] |
Gao, B.; Zhang, L.; Zheng, Q.; Zhou, F.; Klivansky, L. M.; Lu, J.; Liu, Y.; Dong, J.; Wu, P.; Sharpless, K. B. Nat. Chem. 2017, 9, 1083.
|
[36] |
Fang, W.-Y.; Huang, Y.-M.; Leng, J.; Qin, H.-L. Asian J. Org. Chem. 2018, 7, 751.
|
[37] |
Fang, W.-Y; Zha, G.-F.; Qin, H.-L. Org. Lett. 2019, 21, 8657.
|
[38] |
Zhao, C.; Zha, G.-F.; Fang, W.-Y.; Alharbi, N.; Qin, H.-L. Tetrahedron 2019, 75, 4648.
|
[39] |
Fang, W.-Y.; Qin, H.-L. J. Org. Chem. 2019, 84, 5803.
|
[40] |
Zha, G.-F.; Fang, W.-Y.; Leng, J.; Qin, H.-L. Adv. Synth. Catal. 2019, 361, 2262.
|
[41] |
Lekkala, R.; Lekkala, R.; Moku, B.; Rakesh, K. P.; Qin, H.-L. Beilstein J. Org. Chem. 2019, 15, 976.
|
[42] |
(a) Zhao, C.; Zha, G.-F.; Fang, W.-Y.; Rakesh, K. P.; Qin, H.-L. Eur. J. Org. Chem. 2019, 1801.
|
(b) Wang, X.-Y.; Leng, J.; Wang, S.-M.; Asiri, A. M.; Marwani, H. M.; Qin, H.-L. Tetrahedron Lett. 2017, 58, 2340.
|
|
(c) Zhao, C.; Fang, W.-Y.; Rakesh, K. P.; Qin, H.-L. Org. Chem. Front., 2018, 5, 1835.
|
|
(d) Fang, W.-Y.; Leng, J.; Qin, H.-L. Chem.-Asian J. 2017, 12, 2323.
|
|
[43] |
Guo, T.; Meng, G.; Zhan, X.; Yang, Q.; Ma, T.; Xu, L.; Sharpless, K. B.; Dong, J. Angew. Chem., Int. Ed. 2018, 57, 2605.
|
[44] |
Lee, C.; Ball, N. D.; Sammis, G. M. Chem. Commun. 2019, 55, 14753.
|
[45] |
Kwon, J.; Kim, B. M. Org. Lett. 2019, 21, 428.
|
[46] |
Nie, X.; Xu, T.; Song, J.; Devaraj, A.; Zhang, B.; Chen, Y.; Liao, S. Angew. Chem., Int. Ed. 2021, 60, 3956.
|
[47] |
Nie, X.; Xu, T.; Hong, Y.; Zhang, H.; Mao, C.; Liao, S. Angew. Chem., Int. Ed. 2021, 60, 22035.
|
[48] |
(a) Chen, D.; Nie, X.; Feng, Q.; Zhang, Y.; Wang, Y.; Wang, Q.; Huang, L.; Huang, S.; Liao, S. Angew. Chem., Int. Ed. 2021, 60, 27271.
|
(b) Feng, Q.; Fu, Y.; Zheng, Y.; Liao, S.; Huang, S. Org. Lett. 2022, 24, 3702.
|
|
[49] |
Zhao, X.; Chen, D.; Zhu, S.; Luo, J.; Liao, S.; Zheng, B.; Huang, S. Org. Lett. 2023, 25, 3109.
|
[50] |
(a) Zhang, W.; Zou, Z.; Zhao, W.; Lu, S.; Wu, Z.; Huang, M.; Wang, X.; Wang, Y.; Liang, Y.; Zhu, Y.; Zheng, Y.; Pan, Y. Nat. Commun. 2020, 11, 2572.
|
(b) Gao, Y.; Wu, Z.; Yu, L.; Wang, Y.; Pan, Y. Angew. Chem., Int. Ed. 2020, 59, 10859.
|
|
(c) Zhang, W.; Zou, Z.; Wang, Y.; Wang, Y.; Liang, Y.; Wu, Z.; Zheng, Y.; Pan, Y. Angew. Chem., Int. Ed. 2019, 58, 624.
|
|
(d) Liu, J.; Zhang, W.; Tao, X.; Wang, Q.; Wang, X.; Pan, Y.; Ma, J.; Yan, L.; Wang, Y. Org. Lett. 2023, 25, 3083.
|
|
[51] |
Zhang, W.; Li, H.; Li, X.; Zou, Z.; Huang, M.; Liu, J.; Wang, X.; Ni, S.; Pan, Y.; Wang, Y. Nat. Commun. 2022, 13, 3515.
|
[52] |
Li, H.; Huang, M.; Zou, Z.; Wang, Z.; Li, Y.; Sun, C.; Chen, W.; Pan, Y.; Zhang, W.; Wang, Y. Chem. Sci. 2023, 14, 13893.
|
[53] |
Wang, P.; Zhang, H.; Nie, X.; Xu, T.; Liao, S. Nat. Commun. 2022, 13, 3370.
|
[54] |
Wang, P.; Zhang, H.; Zhao, M.; Ji, S.; Lin, L.; Yang, N.; Nie, X.; Song, J.; Liao, S. Angew. Chem., Int. Ed. 2022, 61, e202207684.
|
[55] |
Wang, P.; Li, S.-J.; Zhang, H.; Yang, N.; Liao, S. Synlett 2023, 34, 471.
|
[56] |
Zhang, H.; Yang, N.; Li, J.; Wang, P.; Li, S.; Xie, L.; Liao, S. Org. Lett. 2022, 24, 8170.
|
[57] |
Lin, L.; Wang, P.; Dong, T.; Tsui, G. C.; Liao, S. Org. Lett. 2023, 25, 1088.
doi: 10.1021/acs.orglett.2c04315 pmid: 36775923 |
[58] |
Young, J. A.; Durrell, W. S.; Dresdner, R. D. J. Am. Chem. Soc. 1960, 82, 4553.
|
[59] |
Pearson, R. K.; Dresdner, R. D. J. Am. Chem. Soc. 1962, 84, 4743.
|
[60] |
Hoffman, C. J.; Neville, R. G. Chem. Rev. 1962, 62, 1.
|
[61] |
Takagi, T.; Tamura, M.; Shibakami, M.; Quan, H.-D; Sekiya, A. J. Fluorine Chem. 2000, 101, 15.
|
[62] |
Belter, R. K. J. Fluorine Chem. 2011, 132, 961.
|
[63] |
Belter, R. K. J. Fluorine Chem. 2011, 132, 318.
|
[64] |
Xu, H.; Tang, Y.; Wang, Y.; Meng, H.; Lu, Y.; Fan, H.; Li, C. Ind. Eng. Chem. Res. 2023, 62, 7921.
|
[65] |
McTeague, T. A.; Jamison, T. F. Angew. Chem., Int. Ed. 2016, 55, 15072.
|
[66] |
Berg, C.; Braun, T.; Ahrens, M.; Wittwer, P.; Herrmann, R. Angew. Chem. 2017, 129, 4364.
|
[67] |
Rueping, M.; Nikolaienko, P.; Lebedev, Y.; Adams, A. Green Chem. 2017, 19, 2571.
|
[68] |
Tomar, P.; Braun, T.; Kemnitz, E. Chem. Commun. 2018, 54, 9753.
|
[69] |
Buß, F.; Mück‐Lichtenfeld, C.; Mehlmann, P.; Dielmann, F. Angew. Chem., Int. Ed. 2018, 57, 4951.
|
[70] |
Rombach, D.; Wagenknecht, H. ChemCatChem 2018, 10, 2955.
|
[71] |
Kim, S.; Khomutnyk, Y.; Bannykh, A.; Nagorny, P. Org. Lett. 2021, 23, 190.
|
[72] |
Kim, S.; Nagorny, P. Org. Lett. 2022, 24, 2294.
|
[73] |
Taponard, A.; Jarrosson, T.; Khrouz, L.; Médebielle, M.; Broggi, J.; Tlili, A. Angew. Chem., Int. Ed. 2022, 61, e202204623.
|
[74] |
Savoie, P. R.; Welch, J. T. Chem. Rev. 2015, 115, 1130.
doi: 10.1021/cr500336u pmid: 25341449 |
[75] |
Tullock, C. W.; Coffman, D. D.; Muetterties, E. L. J. Am. Chem. Soc. 1964, 86, 357.
|
[76] |
John, E. O.; Mack, H. G.; Oberhammer, H.; Kirchmeier, R. L.; Shreeve, J. M. Inorg. Chem. 1993, 32, 287.
|
[77] |
Winter, R.; Nixon, P. G.; Gard, G. L.; Radford, D. H.; Holcomb, N. R.; Grainger, D. W. J. Fluorine Chem. 2001, 107, 23.
|
[78] |
Aït-Mohand, S.; Dolbier, W. R. Org. Lett. 2002, 4, 3013.
pmid: 12182612 |
[79] |
Ponomarenko, M. V.; Serguchev, Y. A.; Röschenthaler, G.-V. J. Fluorine Chem. 2010, 131, 270.
|
[80] |
Shou, J.; Xu, X.; Qing, F.-L. Angew. Chem., Int. Ed. 2021, 60, 15271.
|
[81] |
Shou, J.; Qing, F.-L. Angew. Chem., Int. Ed. 2022, 61, e202208860.
|
[82] |
Birepinte, M.; Champagne, P. A.; Paquin, J. Angew. Chem., Int. Ed. 2022, 61, e202112575.
|
[1] | Yi Zhou, Zhuojun Li, Minghui Hu, Zhaohua Yan, Sen Lin. Oxidation of Sulfides with SO2F2/H2O2/Base [J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1545-1550. |
[2] | SHI JILIANG;SHEN XUEQIANG;SONG JIANPING;YAO JIEXING. CW-CO2 laser sensitized CFHCl2 reaction [J]. Chin. J. Org. Chem., 1985, 5(2): 124-127. |
[3] | SHI JILIANG;SHEN XUEQIANG;SONG JIANPING;YAO JIEXING. CW-CO2 laser sensitized oxidation of CF2HCl, CF2=CF2, CF2=CFCl, CHCl3, CHCl=CCl2 and CH2=CH2 [J]. Chin. J. Org. Chem., 1984, 4(3): 198-202. |
[4] | GAO YANGXIN;SHEN ZHONGHE. PIXE analysis of trace amount of chlorine in copolymers [J]. Chin. J. Org. Chem., 1983, 3(4): 273-276. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||