Chinese Journal of Organic Chemistry ›› 2024, Vol. 44 ›› Issue (8): 2487-2494.DOI: 10.6023/cjoc202404016 Previous Articles     Next Articles

ARTICLES

三苯胺-吩噻嗪衍生物掺杂聚合物的光诱导室温磷光

李楠b, 王雲生a,*(), 李振a,b,c,*()   

  1. a 天津大学福州国际校区 天津大学-新加坡国立大学福州联合学院 福州 350207
    b 天津大学分子聚集态科学研究院 天津 300072
    c 武汉大学化学与分子科学学院 湖北省有机高分子光电功能材料重点实验室 武汉 430072
  • 收稿日期:2024-04-10 修回日期:2024-06-23 发布日期:2024-07-10
  • 基金资助:
    国家自然科学基金(22305172); 中国博士后科学基金(2023M732586); 中国博士后科学基金(2024T170640); 国家资助博士后研究人员计划(GZB20230509)

Photoinduced Room-Temperature Phosphorescence of Triphenylamine-Phenothiazine Derivative-Doped Polymers

Nan Lib, Yunsheng Wanga(), Zhen Lia,b,c()   

  1. a Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207
    b Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072
    c Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072
  • Received:2024-04-10 Revised:2024-06-23 Published:2024-07-10
  • Contact: E-mail: wangys_18@tju.edu.cn; lizhen@whu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(22305172); China Postdoctoral Science Foundation(2023M732586); China Postdoctoral Science Foundation(2024T170640); Postdoctoral Fellowship Program of China Postdoctoral Science Foundation (CPSF)(GZB20230509)

Photo-responsive room-temperature phosphorescent (RTP) materials have garnered significant interest due to the advantages of rapid response, spatiotemporal control, and contactless precision manipulation. However, the development of such materials remains in its infancy, underscoring the importance of exploiting novel and efficient light-responsive RTP molecules. In this work, three phenothiazine derivatives of TPA-PTZ, TPA-2PTZ, and TPA-3PTZ were successfully synthesized via the Buchwald-Hartwig C—N coupling reaction. By embedding these molecules as RTP guests into polymethyl methacrylate (PMMA) matrix, photo-induced RTP properties were realized. Upon sustained UV irradiation, there was an enhancement of 19 times in the quantum yield to reach a value of 5.68%. Remarkably, these materials exhibit superior alongside robust light and thermal stability, maintaining high phosphorescence intensity even after prolonged UV exposure (irradiation for>200 s by a 365 nm UV lamp with the power of 500 µW•cm-2) or at higher temperature up to 75 ℃. The outstanding properties of these photo-induced RTP materials make them promising candidates for applications in information encryption, anti-counterfeiting, and advanced optical materials.

Key words: stimuli-responsive luminescent materials, photo-induced room-temperature phosphorescence, phenothiazine deri- vatives, doped polymer