Chinese Journal of Organic Chemistry Previous Articles     Next Articles

REVIEW

Wagner-Meerwein重排反应在天然产物全合成中的应用

陈杰a, 李俊a, 龙先文a, 申海香b,*, 邓军a,*   

  1. a南开大学化学学院 元素有机化学国家重点实验室 天津 300071;
    b武威职业学院, 现代农业学院, 武威, 733000
  • 收稿日期:2024-08-07 修回日期:2024-09-10
  • 基金资助:
    作者简介:国家自然科学基金(Nos. 22188101,22222105, 22301146 and 22371142)、有机新物质创造前沿科学中心(No. 63181206),中央高校基本科研业务费及南开大学中国博士后基金资助项目(No. 332608).

Recent Advances of Wagner-Meerwein Rearrangement in Natural Product Synthesis

Chen Jiea, Li Juna, Long Xianwena, Shen Haixiangb,*, Deng Juna,*   

  1. aCollege of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071;
    bCollege of Advanced Agricultural Sciences, Wuwei Occupational College, Wuwei,733000
  • Received:2024-08-07 Revised:2024-09-10
  • Contact: * E-mail: dengjun@nankai.edu.cn
  • Supported by:
    National Natural Science Foundation of China (Nos. 22188101,22222105, 22301146 and 22371142), the Frontiers Science Center for New Organic Matter, Nankai University (grant no. 63181206), and the Fundamental Research Funds for the Central Universities and China Postdoctoral Science Foundation (332608).

The Wagner-Meerwein rearrangement reaction, renowned for its unique capability in efficiently constructing quaternary chiral centers and achieving carbon skeleton rearrangement within molecules, has been widely applied in the synthesis of numerous complex molecules since its discovery. By incorporating rational biosynthetic pathway analyses, the Wagner-Meerwein rearrangement can be ingeniously introduced into synthetic design to rapidly and efficiently construct ring systems that are challenging to achieve through conventional methods, particularly polycyclic natural products with multiple contiguous quaternary carbon stereocenters. In recent years, the application of the Wagner-Meerwein rearrangement in the synthesis of terpenoids and steroids has increased significantly, demonstrating its unique synthetic advantages. This review primarily summarizes the latest applications of the Wagner-Meerwein rearrangement in the synthesis of these complex natural products since 2019, highlighting its distinct advantages in constructing ring systems with quaternary carbon chiral centers.

Key words: Wagner-Meerwein rearrangement, Natural product, Total synthesis, Terpenoids, Steroids