Notes

Ligand-Free Cross-Coupling of Electron-Poor Aryl Triflates with ZnCl2 Complexes of Amines

  • Xu Juan ,
  • Shi Daxin ,
  • Wei Zhen ,
  • Wei Yingfei ,
  • Zhang Qi ,
  • Li Jiarong
Expand
  • School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081

Received date: 2011-09-30

  Revised date: 2011-11-22

  Online published: 2012-04-24

Abstract

The efficient conversion of electron-poor aryl triflates to the corresponding aromatic amines was accomplished by using ZnCl2 complexes of organic amines as nitrogen source with K2CO3 as the base in DMSO. The coupling reaction was performed in air and ligand-free without the sealed vessel. A possible mechanism, which was different with aromatic nucleophilic substitution (SNAr), was proposed. The amination products were confirmed by 1H NMR, IR and MS techniques.

Cite this article

Xu Juan , Shi Daxin , Wei Zhen , Wei Yingfei , Zhang Qi , Li Jiarong . Ligand-Free Cross-Coupling of Electron-Poor Aryl Triflates with ZnCl2 Complexes of Amines[J]. Chinese Journal of Organic Chemistry, 2012 , 32(04) : 776 -780 . DOI: 10.6023/cjoc1109301

References

[1] (a) Loutfy, R. O.; Hsiao, C. K.; Kazmaier, P. M. Photogr. Sci. Eng. 1983, 27, 5. (b) D'Aprano, G.; Leclerc, M.; Zotti, G.; Schiavon, G. Chem. Mater. 1995, 7, 33. (c) He, F.; Foxman, B. M.; Snider, B. B. J. Am. Chem. Soc. 1998, 120, 6417. (d) Zhang, Z. F.; Zhou, W. C. Chin. J. Org. Chem. 2002, 22, 685 (in Chinese). (张贞发, 周伟澄, 有机化学, 2002, 22, 685.) (e) Xie, Y. X.; Li, J. H.; Yin, D. L. Chin. J. Org. Chem. 2006, 26, 1155 (in Chinese). (谢叶, 李金恒, 尹笃林, 有机化学, 2006, 26, 1155.)

[2] (a) Kim, J. S.; Shon, O. J.; Rim, J. A.; Kim, S. K.; Yoon, J. J. Org. Chem. 2002, 67, 2348. (b) Tang, S.; Liang, Y.; Liu, W. J.; Li, J. H. Chin. J. Org. Chem. 2004, 24, 1133 (in Chinese). (唐石, 梁云, 刘文杰, 李金恒, 有机化学, 2004, 24, 1133.) (c) Joseph, T.; Kumar, K. V.; Ramaswamy, A. V.; Halligudi, S. B. Catal. Commun. 2007, 8, 629.  

[3] (a) Ullmann, F. Ber. Dtsch. Chem. Ges. 1901, 34, 2174. (b) Ullmann, F. Ber. Dtsch. Chem. Ges. 1903, 36, 2382. (c) Ullmann, F.; Sponagel, P. Ber. Dtsch. Chem. Ges. 1905, 38, 2211. (d) Goldberg, I. Ber. Dtsch. Chem. Ges. 1906, 39, 1691. (e) Ullmann, F.; Maag, R. Ber. Dtsch. Chem. Ges. 1906, 39, 1693.  

[4] Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, C.; Lemaire, M. Chem. Rev. 2002, 102, 1359.  

[5] (a) Ma, D.; Zhang, Y.; Yao, J.; Wu, S.; Tao, F. J. Am. Chem. Soc. 1998, 120, 12459. (b) Kunz, K.; Scholz, U.; Ganzer, D. Synlett 2003, 2428. (c) Farina, V. Adv. Synth. Catal. 2004, 346, 1553. (d) Zhang, H.; Cai, Q.; Ma, D. J. Org. Chem. 2005, 70, 5164. (e) Taillefer, M.; Xia, N.; Ouali, A. Angew. Chem., Int. Ed. 2007, 46, 934. (f) Correa, A.; Bolm, C. Angew. Chem., Int. Ed. 2007, 46, 8862. (g) Manolikakes, G.; Gavryushin, A.; Knochel, P. J. Org. Chem. 2008, 73, 1429.  

[6] For recent studies dealing with the Pd-catalyzed C—N bond formation: (a) Smith, C. J.; Early, T. R.; Holmes, A. B.; Shute, R. E. Chem. Commun. 2004, 40, 1976. (b) Gajare, A. S.; Toyota, K.; Yoshifuji, M.; Ozawa, F. J. Org. Chem. 2004, 69, 6504. (c) Singer, R. A.; Tom, N. J.; Frost, H. N.; Simon, W. M. Tetrahedron Lett. 2004, 45, 4715. (d) Lebedev, A. Y.; Khartulyari, A. S.; Voskoboynikov, A. Z. J. Org. Chem. 2005, 70, 596. (e) Goossen, L. J.; Paetzold, J.; Briel, O.; Rivas-Nass, A.; Karch, R.; Kayser, B. Synlett 2005, 275. (f) Suzuki, K.; Hori, Y.; Nishikawa, T.; Kobayashi, T. Adv. Synth. Catal. 2007, 349, 2089. (g) Fang, Y. Q.; Lautens, M. J. Org. Chem. 2008, 73, 538. (h) Kitamura, Y.; Yoshikawa, S.; Furuta, T.; Kan, T. Synlett 2008, 377. (i) Monguchi, Y.; Kitamoto, K.; Ikawa, T.; Maegawa, T.; Sajikia, H. Adv. Synth. Catal. 2008, 350, 2767.  

[7] (a) Desmarets, C.; Schneider, R.; Fort, Y. Tetrahedron Lett. 2000, 41, 2875. (b) Desmarets, C.; Schneider, R.; Fort, Y. Tetrahedron Lett. 2001, 42, 247. (c) Desmarets, C.; Schneider, R.; Fort, Y. Tetrahedron Lett. 2001, 42, 7657. (d) Desmarets, C.; Schneider, R.; Fort, Y. J. Org. Chem. 2002, 67, 3029. (e) Zhang, X. S.; Shi, J. Q.; Sun, L.; Wang, Z. Y. Chin. J. Org. Chem. 2011, 31, 1107 (in Chinese). (张学胜, 石佳奇, 孙莉, 王遵尧, 有机化学, 2011, 31, 1107.) (f) Qin, Y. C.; Peng, Q. Chin. J. Org. Chem. 2011, 31, 1169 (in Chinese). (秦元成, 彭强, 有机化学, 2011, 31, 1169.) (g) Wang, N. X. Chin. J. Org. Chem. 2011, 31, 1319 (in Chinese). (王乃兴, 有机化学, 2011, 31, 1319. )

[8] (a) Guram, A. S.; Rennels, R. A.; Buchwald, S. L. Angew. Chem., Int. Ed. 1995, 34, 1348. (b) Louie, J.; Hartwig, J. F. Tetrahedron Lett. 1995, 36, 3609. (c) Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 6054. (d) Louie, J.; Hartwig, J. F. J. Am. Chem. Soc. 1997, 119, 11695. (e) Singer, R. A.; Sadighi, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 213. (f) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046. (g) Kiyomori, A.; Marcoux, J. F.; Buchwald, S. L. Tetrahedron Lett. 1999, 40, 2657. (h) Antilla, J. C.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 11684. (i) Huang, X.; Anderson, K. W.; Zim, D.; Jiang, L.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 6653. (j) Stauffer, S. R.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 6977. (k) Hennessy, E. J.; Buchwald, S. L. J. Org. Chem. 2005, 70, 7371. (l) Anderson, K. W.; Tundel, R. E.; Ikawa, T.; Altman, R. A.; Buchwald, S. L. Angew. Chem., Int. Ed. 2006, 45, 6523. (m) Johns, A. M.; Tye, J. W.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 16010. (n) Shekhar, S.; Hartwig, J. F. Organometallics 2007, 26, 340. (o) Henderson, J. L. McDermott, S. M.; Buchwald, S. L. Org. Lett. 2010, 12, 4438. (p) Henderson, J. L.; Buchwald, S. L. Org. Lett. 2010, 12, 4442.  

[9] (a) Stang, P. J.; Hanack, H.; Subramanian, L. R. Synthesis 1982, 85. (b) Echavarren, A. M.; Stille, J. K. J. Am. Chem. Soc. 1987, 109, 5478.  

[10] (a) Oh-e, T.; Miyaura, N.; Suzuki, A. J. Org. Chem. 1993, 58, 2201. (b) Ritter, K. Synthesis 1993, 735. (c) Schio, L.; Lemoine, G.; Klich, M. Synlett 1999, 10, 1559. (d) Hicks, F. A.; Brookhart, M. Org. Lett. 2000, 2, 219.  

[11] Kotsuki, H.; Kobayashi, S.; Suenaga, H.; Nishizawa, H. Synthesis 1990, 1145.  

[12] (a) Wolfe, J. P.; Buchwald, S. L. J. Org. Chem. 1997, 62, 1264. (b) Ahman, J.; Buchwald, S. L. Tetrahadron Lett. 1997, 38, 6363. (c) Louie, J.; Driver, M. S.; Hamann, B. C.; Hartwig, J. F. J. Org. Chem. 1997, 62, 1268. (d) Meadowsa, R. E.; Woodward, S. Tetrahedron 2008, 64, 1218.  

[13] Senear, A. E.; Rapport, M. M.; Mead, J. F. J. Org. Chem. 1946, 11, 378.  

[14] Matsumura, E.; Tohda, Y.; Ariga, M. Bull. Chem. Soc. Jpn. 1982, 55, 2174.  

[15] LuValle, J. E.; Glass, D. B.; Weissberger, A. J. Am. Chem. Soc. 1948, 70, 2223.  

[16] Fors B. P.; Buchwald, S, L. J. Am. Chem. Soc. 2009, 131, 12898.  

[17] Husain, M. I.; Agarwal, S. K. Indian J. Chem. 1975, 13, 1238.

[18] Meldola, R. J. Chem. Soc. T. 1915, 107, 610.

[19] Sentein, C. Sol. Energy Mater. Sol. Cells 2007, 91, 1816.  

[20] Kim, S. J. Org. Chem. 1985, 50, 1927.  

[21] Kremer, C. B. J. Am. Chem. Soc. 1939, 61, 2552.

[22] Plakidin, V. L.; Vostrova, V. N. Zh. Org. Khim. 1982, 18, 342.

[23] Medici, A. J. A. J. Chem. Soc., Perkin Trans. 1 1977, 22, 2517.

[24] Kost, A. N. Zh. Obshch. Khim. 1964, 34, 4046.

[25] Pedersen, E. B. Synthesis 1978, 844.

[26] (a) Lee, S.; Jorgensen, M.; Hartwig, J. F. Org. Lett. 2001, 3, 2729. (b) Harris, M. C.; Huang, X. H.; Buchwald, S. L. Org. Lett. 2002, 4, 2885. (c) Lee, D. Y.; Hartwig, J. F. Org. Lett. 2005, 7, 1169. (d) Hatakeyama, T.; Yoshimoto, Y.; Ghorai, S. K.; Nakamura, M. Org. Lett. 2010, 12, 1516.  

[27] (a) Visnjevac, A.; Tusek-Bozic, L.; Majeric-Elenkov, M.; Hamersak, Z.; Kooijman, H.; De Clercq, E.; Kojic-Prodic, B. Polyhedron 2002, 21, 2567. (b) Usama, E. A.; Alaa, A. M. A. A; Shar, A. S. Eur. J. Med. Chem. 2007, 42, 1325. (c) Do, H.-Q.; Daugulis. O. J. Am. Chem. Soc. 2009, 131, 17052. (d) Bresser, T.; Mosrin, M.; Monzon, G.; Knochel, P. J. Org. Chem. 2010, 75, 4686. (e) Zimdars, S.; Jourdin, X. M. D.; Crestey, F.; Carell, T.; Knochel, P. Org. Lett. 2011, 13, 792. (f) Duez, S.; Bernhardt, S.; Heppekausen, J.; Fleming, F. F.; Knochel, P. Org. Lett. 2011, 13, 1690.  
Outlines

/