Notes

Study on the Microwave Effect in the Claisen Rearrangement of the Allyl Phenyl Ethers

  • Lan Cong ,
  • Xu Pan ,
  • Liang Ronghui ,
  • Xu Zelong ,
  • Xia Zhining
Expand
  • College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030

Received date: 2011-09-22

  Revised date: 2011-12-11

  Online published: 2012-04-24

Supported by

Project supported by the International Science and Technology Cooperation Program of China (No. 2010DFA32680).

Abstract

Solvent-free and catalyst-free Clasien rearrangement of five kinds of allyl phenyl ethers were investigated under microwave heating and conventional heating respectively. The effects on the reaction rates by microwave heating and conventional heating were compared. The results demonstrate that microwave heating could greatly accelerate the reaction rate of the Claisen rearrangement. The reaction rates under microwave heating are 5~10 times higher than those acted by conventional heating at 190 ℃. The microwave heating is an efficient method of catalyst-free, high yield of Claisen rearrangement.

Cite this article

Lan Cong , Xu Pan , Liang Ronghui , Xu Zelong , Xia Zhining . Study on the Microwave Effect in the Claisen Rearrangement of the Allyl Phenyl Ethers[J]. Chinese Journal of Organic Chemistry, 2012 , 32(04) : 765 -769 . DOI: 10.6023/cjoc1109223

References

[1] Liu, Z. H.; Qu, H. C.; Gu, X. Y.; Lee, K. S.; Bryan, G.; Kumirov, V. K.; Hruby, V. J. Tetrahedron Lett. 2010, 51(27), 3518.

[2] Bruder, M.; Smith, S. J.; Blake, A. J.; Moody, C. J. Org. Biomol. Chem. 2009, 7(10), 2127.  

[3] Camp, J. E.; Craig, D. Tetrahedron Lett. 2009, 50(26), 3503.

[4] Biswas, S.; Maiti, S.; Jana, U. Eur. J. Org. Chem. 2010, 41(39), 2861.

[5] Ollevier, T.; Mwene-Mbeja, T. M. Tetrahedron Lett. 2006, 47(24), 4051.

[6] Hiersemann, M.; Abraham, L. Eur. J. Org. Chem. 2002, 2002(9), 1461.  

[7] Wang, S. L.; Cheng, C.; Gong, F.; Wu, F. Y.; Jiang, B.; Zhou, J. F.; Tu, S. J. Chin. J. Chem. 2011, 29, 2101.

[8] Andrade, M. M. J. Comb. Chem. 2010, 12(2), 245.  

[9] Ye, P.; Sargent, K.; Stewart, E.; Liu, J. F.; Yohannes, D.; Yu, L. B. J. Org. Chem. 2006, 71(8), 3137.

[10] Gao, R.; Canney, D. J. J. Org. Chem. 2010, 75(21), 7451.

[11] Chai, H. S.; Lam, Y. L. J. Comb. Chem. 2010, 12(2), 286.  

[12] Chebanov, V. A.; Muravyova, E. A.; Desenko, S. M.; Musatov, V. I.; Knyazeva, I. V.; Shishkina, S. V.; Shishkin, O. V.; Kappe, C. O. J. Comb. Chem. 2006, 8(3), 427.

[13] Yamashitaa, H.; Mitsukuraa, Y.; Kobashia, H.; Hirokia, K.; Sugiyamaa, J. I.; Onishib, K.; Sakamotoc, T. Appl. Catal., A 2010, 381(1~2), 145.

[14] Yamamoto, T.; Enokida, H.; Fujimoto, M. Green Chem. 2003, 5(6), 690.

[15] Schobert, R.; Gordon, G. J.; Mullen, G.; Stehle, R. Tetrahedron Lett. 2004, 45(6), 1121.

[16] Chen, X. X.; Xu, P.; Xia, Z. N. Chemistry 2009, (8), 674 (in Chinese). (陈新秀, 徐盼, 夏之宁, 化学通报, 2009, (8), 674.)

[17] Pincock, A. L.; Pincock, J. A.; Stefanova, R. J. Am. Chem. Soc. 2002, 124(33), 9768.  

[18] Willem, A. L. V. O.; Garreth, L. M.; Lee, G. M.; Samuel, K.; Simon, S. M.; Natalie, T.; Charles, B. D. K. Tetrahedron 2005, 61(32), 7746.
Outlines

/