Reviews

Progress of Lipase-Catalyzed Ester Synthesis in Ionic Liquid

  • Li Jing ,
  • Wang Jun ,
  • Zhang Leixia ,
  • Gu Shuangshuang ,
  • Wu Fuan ,
  • Guo Yuewei
Expand
  • a College of Biological and Chemistry, Jiangsu University of Science and Technology, Zhenjiang 212018;
    b The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018;
    c State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203

Received date: 2011-10-19

  Revised date: 2011-12-25

  Online published: 2012-02-17

Supported by

Project supported by the Surface Project of the National Natural Science Foundation of China (No. 20876076), the “Youth Project” Outstanding Young Teachers Aid of Jiangsu Prvince Colleges (No. 2010), the Surface Project of Jiangsu Natural Science Foundation of Jiangsu Province (No. BK2009213), the Scientific Support Plan of Jiangsu Province (Agriculture) (No. BE2010419), the Construction of the Modern Agricultural Industrial Technology System (No. CARS-22) and the Scientific Projects of Jiangsu University of Science and Technology (Nos. 35211002, 33201002).

Abstract

As one of the most potential green solvents in the 21st century, ionic liquid has been used as reaction media in the enzymatic synthesis with enormous advantages. Compared with conventional organic media, ionic liquid could improve the stability and selectivity of lipase, reduce side reactions, eliminate toxicant organic gas, simplify the post-processing, and be renewable. Combined with the recent decade’s references, this review is focused on summarizing various ionic liquids as the media, process factors, strengthening effect of field and bioreactors in the lipase-catalyzed ester synthesis process. Moreover, some future perspectives on enzymatic synthesis in ionic liquid are discussed.

Cite this article

Li Jing , Wang Jun , Zhang Leixia , Gu Shuangshuang , Wu Fuan , Guo Yuewei . Progress of Lipase-Catalyzed Ester Synthesis in Ionic Liquid[J]. Chinese Journal of Organic Chemistry, 2012 , 32(07) : 1186 -1194 . DOI: 10.6023/cjoc1110191

References

[1] Jegannathan, K. R.; Abang, S.; Poncelet, D.; Chan, E. S.; Ravindra, P. Crit. Rev. Biotechnol. 2008, 28, 253.  
[2] Gupta, M. N.; Roy, I. Eur. J. Biochem. 2004, 271, 2575.
[3] De Diego, T.; Lozano, P.; Abad, M. A.; Steffensky, K.; Vaultier, M.; Iborra, J. L. J. Biotechnol. 2009, 140, 234.  
[4] Zhong, T.; Le, Z.-G.; Xie, Z.-B.; Cao, X.; Lü, X.-X. Chin. J. Org. Chem. 2010, 30, 981 (in Chinese). (钟涛, 乐长高, 谢宗波, 曹霞, 吕雪霞, 有机化学, 2010, 30, 981.)
[5] Lozano, P.; De Diego, T.; Carrié, D.; Vaultier, M.; Iborra, J. L. J. Mol. Catal. B: Enzym. 2003, 21, 9.  
[6] Cao, X.; Le, Z-G. Chin. J. Org. Chem. 2010, 30, 816 (in Chinese). (曹霞, 乐长高, 有机化学, 2010, 30, 816.)
[7] Zhao, H. J. Chem. Technol. Biotechnol. 2010, 85, 891.  
[8] Guo, Z.; Lue, B.; Thomasen, K.; Meye, A. S.; Xu, X. Green Chem. 2007, 9, 1362.  
[9] Chiappe, C.; Leandri, E.; Tebano, M. Green Chem. 2006, 8, 742.  
[10] Kahveci, D.; Guo, Z.; ?z?elik, B.; Xu, X. Process Biochem. 2009, 44, 1358.  
[11] Lue, B.; Guo, Z.; Xu, X. J. Chromatogr. A 2008, 1198~1199, 107.  
[12] Lancaster, N. L.; Salter, P. A.; Welton, T.; Young, G. B. J. Org. Chem. 2002, 67, 8855.  
[13] Martín, J. R.; Nus, M.; Gago, J. V. S.; Sánchez-Montero, J. M. J. Mol. Catal. B: Enzym. 2008, 52, 162.  
[14] Pereiro, A. B.; Legido, J. L.; Rodr? Guez, A. J. Chem. Thermodyn. 2007, 39, 1168.  
[15] Shah, S.; Gupta, M. N. Biochim. Biophys. Acta, Gen. Subj. 2007, 1770, 94.  
[16] De Los Ríos, A. P.; Hernández-Fernández, F. J.; Tomás-Alonso, F.; Gámez, D.; Víllora, G. Process Biochem. 2008, 43, 892.  
[17] De Los Ríos, A. P.; Hernández-Fernández, F. J.; Martínez, F. A.; Rubio, M.; Víllora, G. Biocatal. Biotransform. 2007, 25, 151.  
[18] Toral, A. R.; De Los Ríos, A. P.; Hernández, F. J.; Janssen, M. H. A.; Schoevaart, R.; Van Rantwijk, F.; Sheldon, R. A. Enzyme Microb. Technol. 2007, 40, 1095.  
[19] Van Rantwijk, F.; Secundo, F.; Sheldon, R. A. Green Chem. 2006, 8, 282.  
[20] Itoh, T.; Han, S.; Matsushita, Y.; Hayase, S. Green Chem. 2004, 6, 437.  
[21] Yuan, Y.; Bai, S.; Sun, Y. Food Chem. 2006, 97, 324.  
[22] Kurata, A.; Kitamura, Y.; Irie, S.; Takemoto, S.; Akai, Y.; Hirota, Y.; Fujita, T.; Iwai, K.; Furusawa, M.; Kishimoto, N. J. Biotechnol. 2010, 148, 133.
[23] Hernandez-Fernandez, F. J.; Des los Rios, A. P.; Lozano-Blanco, L. J. Chem. Technol. Biotechnol. 2010, 85, 1423.
[24] Madeira, L. R.; Sorgedrager, M. J.; Carrea, G.; Van Rantwijk, F.; Secundo, F.; Sheldon, R. A. Green Chem. 2004, 6, 483.  
[25] Ha, S. H.; Lan, M. N.; Lee, S. H.; Hwang, S. M.; Koo, Y. Enzyme Microb. Technol. 2007, 41, 480.  
[26] Nara, S. J.; Harjani, J. R.; Salunkhe, M. M. Tetrahedron Lett. 2002, 43, 1979.
[27] Lozano, P.; De Diego, T.; Carrié, D.; Vaultier, M.; Iborra, J. L. J. Mol. Catal. A: Chem. 2004, 214, 113.  
[28] Kragl, U.; Eckstein, M.; Kaftzik, N. Curr. Opin. Biotechnol. 2002, 13, 565.  
[29] Park, S.; Kazlauskas, R. J. Curr. Opin. Biotechnol. 2003, 14, 432.  
[30] Gamba, M.; Lapis, A. A. M.; Dupont, J. Adv. Synth. Catal. 2008, 350, 160.  
[31] Katsoura, M. H.; Polydera, A. C.; Tsironis, L.; Tselepis, A. D.; Stamatis, H. J. Biotechnol. 2006, 123, 491.  
[32] Lee, S.; Ha, S.; Lee, S.; Koo, Y. Biotechnol. Lett. 2006, 28, 1335.  
[33] Lee, J. K.; Kim, M. J. Mol. Catal. B: Enzym. 2011, 68, 275.  
[34] Domínguez De María, P. Angew. Chem., Int. Ed. 2008, 47, 6960.  
[35] Schofer, S. H.; Kaftzik, N.; Wasserscheid, P.; Kragl, U. Chem. Commun. 2001, 425.
[36] Abe, Y.; Kude, K.; Hayase, S.; Kawatsura, M.; Tsunashima, K.; Itoh, T. J. Mol. Catal. B: Enzym. 2008, 51, 81.  
[37] Fujita, K.; Macfarlane, D. R.; Forsyth, M. Chem. Commun. 2005, 4804.
[38] Foresti, M. L.; Ferreira, M. L. J. Mol. Catal. B: Enzym. 2009, 61, 289.  
[39] Mantarosie, L.; Coman, S.; Parvulescu, V. I. J. Mol. Catal. A-Chem. 2008, 279, 223.  
[40] Zhao, H.; Baker, G. A.; Song, Z.; Olubajo, O.; Zanders, L.; Campbell, S. M. J. Mol. Catal. B: Enzym. 2009, 57, 149.  
[41] Zhang, Q.; Zhang, S.; Deng, Y. Green Chem. 2011, 13, 2619.  
[42] De Los Ríos, A. P.; Hernández-Fernández, F. J.; G?mez, D.; Rubio, M.; Víllora, G. Process Biochem. 2011, 46, 1475.  
[43] Constantinescu, D.; Weing?rtner, H.; Herrmann, C. Angew. Chem., Int. Ed. 2007, 46, 8887.  
[44] Salis, A.; Bilani?ová, D.; Ninham, B. W.; Monduzzi, M. J. Phys. Chem. B 2007, 111, 1149.  
[45] Adamczak, M.; Bornscheuer, U. T. Process Biochem. 2009, 44, 257.  
[46] Lue, B.; Guo, Z.; Xu, X. Process Biochem. 2010, 45, 1375.  
[47] Li, X.; Eli, W. J. Mol. Catal. A: Chem. 2008, 279, 159.  
[48] Van Rantwijk, F.; Madeira, L. R.; Sheldon, R. A. Trends Biotechnol. 2003, 21, 131.  
[49] Lu, D.-Q.; Jiang, B.; Wang, J.; Zhao, H.; Lin, X.-Q.; Chai, H.; Xia, T. Chin. J. Anal. Chem. 2010, 38, 1657 (in Chinese). (卢定强, 蒋奔, 王俊, 赵辉, 林岫泉, 柴宏, 夏亭, 分析化学, 2010, 38, 1657.)
[50] Lu, D.-Q.; Jiang, B.; Wang, J.; Zhao, H.; Lin, X.-Q.; Liu, J. Modern. Chem. Ind. 2009, 29, 20 (In Chinese). (卢定强, 蒋奔, 王俊, 赵辉, 林岫泉, 刘骥, 现代化工, 2009, 29, 20.)
[51] Ha, S.; Hiep, N.; Lee, S.; Koo, Y. Bioprocess Biosyst. Eng. 2010, 33, 63.  
[52] Yang, Z.; Pan, W. Enzyme Microb. Technol. 2005, 37, 19.  
[53] Lou, W.; Zong, M.; Liu, Y.; Wang, J. J. Biotechnol. 2006, 125, 64.  
[54] Durand, J.; Teuma, E.; Gómez, M. C. R. Chim. 2007, 10, 152.  
[55] Sheldon, R. A.; Lau, R. M.; Sorgedrager, M. J.; Van Rantwijk, F.; Seddon, K. R. Green Chem. 2002, 4, 147.  
[56] Ganske, F.; Bornscheuer, U. T. Org. Lett. 2005, 7, 3097.  
[57] Kennedy, J. F.; Kumar, H.; Panesar, P. S.; Marwaha, S. S.; Goyal, R.; Parmar, A.; Kaur, S. J. Chem. Technol. Biotechnol. 2006, 81, 866.  
[58] Park, S.; Kazlauskas, R. J. J. Org. Chem. 2001, 66, 8395.  
[59] Lang, D. A.; Mannesse, M. L. M.; De Haas, G. H.; Verheij, H. M.; Dijkstra, B. W. Eur. J. Biochem. 1998, 254, 333.
[60] Lee, S. H.; Nguyen, H. M.; Koo, Y.; Ha, S. H. Process Biochem. 2008, 43, 1009.  
[61] Xiao, Y.; Wu, Q.; Cai, Y.; Lin, X. Carbohydr. Res. 2005, 340, 2097.  
[62] Huang, J.; Liu, Y.; Song, Z.; Jin, Q.; Liu, Y.; Wang, X. Ultrason. Sonochem. 2010, 17, 1115.
[63] Rufino, A. R.; Biaggio, F. C.; Santos, J. C.; De Castro, H. F. Int. J. Biol. Macromol. 2010, 47, 5.  
[64] Yu, D.; Wang, C.; Yin, Y.; Zhang, A.; Gao, G.; Fang, X. Green Chem. 2011, 13, 1869.  
[65] Rejasse, B.; Lamare, S.; Legoy, M.; Besson, T. Org. Biomol. Chem. 2004, 2, 1086.  
[66] Kumar, R.; Ravi, K. G.; Chandrashekar, N. Bioresour. Technol. 2011, 102, 6617.  
[67] Rejasse, B.; Lamare, S.; Legoy, M.; Besson, T. J. Enzyme Inhib. Med. Chem. 2007, 22, 519.  
[68] Shi, H.; Zhu, W.; Li, H.; Liu, H.; Zhang, M.; Yan, Y.; Wang, Z. Catal. Commun. 2010, 11, 588.  
[69] Agustian, J.; Kamaruddin, A. H.; Bhatia, S. J. Chem. Technol. Biotechnol. 2011, 86, 1032.  
[70] Deng, H.; Xu, Z.; Dai, Z.; Wu, J.; Seta, P. Enzyme Microb. Technol. 2005, 36, 996.  
[71] Giorno, L.; Piacentini, E.; Mazzei, R.; Drioli, E. J. Membr. Sci. 2008, 317, 19.  
[72] Vrijenhoek, E. M.; Hong, S.; Elimelech, M. J. Membr. Sci. 2001, 188, 115.  
[73] Graber, M.; Irague, R.; Rosenfeld, E.; Lamare, S.; Franson, L.; Hult, K. Biochim. Biophys. Acta, Proteins Proteomics 2007, 1774, 1052.  
[74] Paolucci-Jeanjean, D.; Belleville, M.; Rios, G. M. J. Chem. Technol. Biotechnol. 2001, 76, 273.  
[75] Ahmed, B.; Barrow, D.; Wirth, T. Adv. Synth. Catal. 2006, 348, 1043.  
[76] Karande, R.; Schmid, A.; Buehler, K. Langmuir 2010, 26, 9152.  
[77] Kashid, M. N.; Harshe, Y. M.; Agar, D. W. Ind. Eng. Chem. Res. 2007, 46, 8420.  
[78] Tanaka, Y.; Slyadnev, M. N.; Sato, K.; Tokeshi, M.; Kim, H.; Kitamori, T. Anal. Sci. 2001, 17, 809.  
Outlines

/