Reviews

Recent Advances in the Synthesis of Heparan Sulfate Oligosaccharides

  • Yin Xiaojuan ,
  • Yan Jun ,
  • Ji Shengli ,
  • Wang Fengshan ,
  • Cao Hongzhi
Expand
  • a National Glycoengineering Research Center, Shandong University, Jinan 250012;
    b School of Pharmaceutical Science, Shandong University, Jinan 250012

Received date: 2011-12-08

  Revised date: 2012-02-15

  Online published: 2012-03-09

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 20902087, 21172135) and the National Basic Research Program of China (973 program, No. 2012CB822102).

Abstract

Heparin (HP) and heparan sulfate (HS), a member of the glycosaminoglycan (GAG) family, are structurally related linear polyanionic polysaccharides. These complex sulfated polysaccharides can interact with hundreds of proteins and play essential roles in mediating or modulating a variety of physiological and pathological processes. Accumulated evidence has shown that the biological functions of HP and HS can be critically dependent upon their precise structure sequences. To decipher the sequence code of HS and HP, many research groups have focus on the development of novel strategies and synthetic methods for the assembling of heparin oligosaccharides during the last decade. The key developments since 2001 in the chemical or chemoenzymatic synthesis of heparin oligosaccharides are covered in this review.

Cite this article

Yin Xiaojuan , Yan Jun , Ji Shengli , Wang Fengshan , Cao Hongzhi . Recent Advances in the Synthesis of Heparan Sulfate Oligosaccharides[J]. Chinese Journal of Organic Chemistry, 2012 , 32(08) : 1388 -1400 . DOI: 10.6023/cjoc1112081

References

[1] Casu, B.; Lindahl, U. Adv. Carbohydr. Chem. Biochem. 2001, 57, 159.

[2] Capila, I.; Linhardt, R. J. Angew. Chem., Int. Ed. 2002, 41, 391.

[3] Raman, R.; Sasisekharan, V.; Sasisekharan, R. Chem. Biol. 2005, 12, 267.

[4] Sasisekharan, R.; Raman, R.; Prabhakar, V. Ann. Rev. Biomed. Eng. 2006, 8, 181.

[5] Petitou, M.; Duchaussoy, P.; Lederman, I.; Choay, J.; Sinay, P.; Jacquinet, J. C.; Torri, G. Carbohydr. Res. 1986, 147, 221.

[6] Petitou, M.; Duchaussoy, P.; Lederman, I.; Choay, J.; Jacquinet, J. C.; Sinay, P.; Torri, G. Carbohydr. Res. 1987, 167, 67.

[7] Petitou, M.; van Boeckel, C. A. A. Angew. Chem., Int. Ed. 2004, 43, 3118.

[8] Kovensky, J. Curr. Med. Chem. 2009, 16, 2338.

[9] Gandhi, N. S.; Mancera, R. L. Drug Discovery Today 2010, 15, 1058.

[10] Poletti, L.; Lay, L. Eur. J. Org. Chem. 2003, 2999.

[11] Karst, N. A.; Linhardt, R. J. Curr. Med. Chem. 2003, 10, 1993.

[12] Whitelock, J. M.; Iozzo, R. V. Chem. Rev. 2005, 105, 2745.

[13] Orgueira, H. A.; Bartolozzi, A.; Schell, P.; Seeberger, P. H. Angew. Chem., Int. Ed. 2002, 41, 2128.

[14] Orgueira, H. A.; Bartolozzi, A.; Schell, P.; Litjens, R.; Palmacci, E. R.; Seeberger, P. H. Chem. Eur. J. 2003, 9, 140.

[15] Lohman, G. J. S.; Seeberger, P. H. J. Org. Chem. 2004, 69, 4081.

[16] Adibekian, A.; Bindschadler, P.; Timmer, M. S. M.; Noti, C.; Schutzenmeister, N.; Seeberger, P. H. Chem. Eur. J. 2007, 13, 4510.

[17] Prabhu, A.; Venot, A.; Boons, G. J. Org. Lett. 2003, 5, 4975.

[18] Arungundram, S.; Al-Mafraji, K.; Asong, J.; Leach, F. E.; Amster, I. J.; Venot, A.; Turnbull, J. E.; Boons, G. J. J. Am. Chem. Soc. 2009, 131, 17394.

[19] Cao, H. Z.; Yu, B. Tetrahedron Lett. 2005, 46, 4337.

[20] Zhou, Y.; Lin, F.; Chen, J.; Yu, B. Carbohydr. Res. 2006, 341, 1619.

[21] Chen, J.; Zhou, Y.; Chen, C.; Xu, W.; Yu, B. Carbohydr. Res. 2008, 343, 2853.

[22] Chen, J. F.; Yu, B. Tetrahedron Lett. 2008, 49, 1682.

[23] Chen, C.; Yu, B. Bioorg. Med. Chem. Lett. 2009, 19, 3875.

[24] Hung, S. C.; Thopate, S. R.; Chi, F. C.; Chang, S. W.; Lee, J. C.; Wang, C. C.; Wen, Y. S. J. Am. Chem. Soc. 2001, 123, 3153.

[25] Lee, J. C.; Lu, X. A.; Kulkarni, S. S.; Wen, Y. S.; Hung, S. C. J. Am. Chem. Soc. 2004, 126, 476.

[26] Lu, N.-D. L.; Shie, C.-R.; Kulkarni, S. S.; Pan, G.-R.; Lu, X.-A.; Hung, S.-C. Org. Lett. 2006, 8, 5995.

[27] Hu, Y. P.; Lin, S. Y.; Huang, C. Y.; Zulueta, M. M. L.; Liu, J. Y.; Chang, W.; Hung, S. C. Nat. Chem. 2011, 3, 557.

[28] Wang, C.-C.; Lee, J.-C.; Luo, S.-Y.; Kulkarni, S. S.; Huang, Y.-W.; Lee, C.-C.; Chang, K.-L.; Hung, S.-C. Nature 2007, 446, 896.

[29] Codee, J. D. C.; Stubba, B.; Schiattarella, M.; Overkleeft, H. S.; van Boeckel, C. A. A.; van Boom, J. H.; van der Marel, G. A. J. Am. Chem. Soc. 2005, 127, 3767.

[30] Zhang, Z. Y.; Ollmann, I. R.; Ye, X. S.; Wischnat, R.; Baasov, T.; Wong, C. H. J. Am. Chem. Soc. 1999, 121, 734.

[31] Polat, T.; Wong, C. H. J. Am. Chem. Soc. 2007, 129, 12795.

[32] Yu, H. N.; Furukawa, J.; Ikeda, T.; Wong, C. H. Org. Lett. 2004, 6, 723.

[33] Huang, X. F.; Huang, L. J.; Wang, H. S.; Ye, X. S. Angew. Chem., Int. Ed. 2004, 43, 5221.

[34] Wang, Z.; Xu, Y. M.; Yang, B.; Tiruchinapally, G.; Sun, B.; Liu, R. P.; Dulaney, S.; Liu, J. A.; Huang, X. F. Chem. Eur. J. 2010, 16, 8365.

[35] Al-Horani, R. A.; Desai, U. R. Tetrahedron 2010, 66, 2907.

[36] Miller, S. C. J. Org. Chem. 2010, 75, 4632.

[37] Ingram, L. J.; Taylor, S. D. Angew. Chem., Int. Ed. 2006, 45, 3503.

[38] Desoky, A. Y.; Taylor, S. D. J. Org. Chem. 2009, 74, 9406.

[39] Tiruchinapally, G.; Yin, Z.; El-Dakdouki, M.; Wang, Z.; Huang, X. Chem. Eur. J. 2011, 17, 10106.

[40] Chen, J. H.; Avci, F. Y.; Munoz, E. M.; McDowell, L. M.; Chen, M.; Pedersen, L. C.; Zhang, L. J.; Linhardt, R. J.; Liu, J. J. Biol. Chem. 2005, 280, 42817.

[41] Martin, J. G.; Gupta, M.; Xu, Y.; Akella, S.; Liu, J.; Dordick, J. S.; Linhardt, R. J. J. Am. Chem. Soc. 2009, 131, 11041.

[42] Liu, R. P.; Xu, Y. M.; Chen, M. A.; Weiwer, M.; Zhou, X. X.; Bridges, A. S.; DeAngelis, P. L.; Zhang, Q. S.; Linhardt, R. J.; Liu, J. A. J. Biol. Chem. 2010, 285, 34240.

[43] Xu, Y.; Masuko, S.; Takieddin, M.; Xu, H.; Liu, R.; Jing, J.; Mousa, S. A.; Linhardt, R. J.; Liu, J. Science 2011, 334, 498.

[44] Paulsen, H. Angew. Chem., Int. Ed. 1982, 21, 155.
Outlines

/