Articles

Asymmetric Oxidation of Thioanisole with H2O2 Catalyzed by Na2MoO4 and Induced by β-Cyclodextrin Derivatives

  • Shen Hai-Min ,
  • Ji Hong-Bing
Expand
  • School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275

Received date: 2012-02-20

  Revised date: 2012-05-21

  Online published: 2012-04-13

Supported by

Project supported by the National Natural Science Foundation of China (Nos.21176268, 21036009), the Higher-Level Talent Project for Guangdong Provincial Universities in 2010 and the Fundamental Research Funds for the Central Universities

Abstract

Five new cycloamino-alcohol modified β-cyclodextrins CD-1~CD-5 were synthesized via nucleophilic substitution from mono(6-O-p-tolylsulfonyl)-β-cyclodextrin in the yields of 36%~68%, and were characterized by 1H NMR,13C NMR and ESI-MS techniques. Then these β-cyclodextrin derivatives were applied to the asymmetric oxidation of thioanisole as the ligand of Na2MoO4 using H2O2 as oxidant. It was demonstrated that the pH value of the reaction medium presented an important effect on the enantioselectivity in this reaction system. For the better one, CD-4, in aqueous CH3COONa-HCl buffer solution (pH 7.0), 21.25% ee value was obtained in the asymmetric oxidation of thioanisole with H2O2 catalyzed by Na2MoO4. The result of 2D-1H ROESY NMR demonstrated that the origin of the low ee value was the self-inclusion of CD-1~CD-5 in the asymmetric oxidation of thioanisole, which was also confirmed by quantum calculation.

Cite this article

Shen Hai-Min , Ji Hong-Bing . Asymmetric Oxidation of Thioanisole with H2O2 Catalyzed by Na2MoO4 and Induced by β-Cyclodextrin Derivatives[J]. Chinese Journal of Organic Chemistry, 2012 , 32(9) : 1684 -1689 . DOI: 10.6023/cjoc1202202

References

[1] Sallas, F.; Darcy, R. Eur. J. Org. Chem. 2008, 957.

[2] Ji, H.-B.; Huang, L.-Q.; Shi, D.-P.; Zhou, X.-T. Chin. J. Org. Chem. 2008, 28, 2072 (in Chinese).(纪红兵, 黄丽泉, 石东坡, 周贤太 有机化学, 2008, 28, 2072.)

[3] (a) Breslow, R.; Steven, D. D. Chem. Rev. 1998, 98, 1997.

(b) Bjerre, J.; Rousseau, C.; Marinescu, L.; Bols, M. Appl. Microbiol. Biotechnol. 2008, 81, 1.

[4] (a) Dong, Z.-Y.; Liu, J.-Q.; Mao, S.-Z.; Huang, X.; Yang, B.; Ren, X.-J.; Luo, G.-M.; Shen, J.-C. J. Am. Chem. Soc. 2004, 126, 16395.

(b) Dong, Z.-Y.; Liu, J.-Q.; Mao, S.-Z.; Huang, X.; Luo, G.-M.; Shen, J.-C. J. Inclusion Phenom. Macrocyclic Chem. 2006, 56, 179.

(c) Dong, Z.-Y.; Liang, K.; Wang, C.-Y.; Huang, X.; Mao, S.; Li, X.-Z.; Xu, J.-Q.; Liu, J.-Q.; Luo, G.-M.; Shen, J.-C. J. Mol. Catal. A: Chem. 2007, 277, 193.

[5] Hu, S.-S.; Li, J.-Y.; Xiang, J.-F.; Pan, J.; Luo, S.-Z.; Cheng, J.-P. J. Am. Chem. Soc. 2010, 132, 7216.

[6] (a) French, R. R.; Holzer, P.; Leuenberger, M. G.; Woggon, W. D. Angew. Chem., Int. Ed. 2000, 39, 1267.

(b) French, R. R.; Holzer, P.; Leuenberger, M.; Nold, M. C.; Woggon, W. D. J. Inorg. Biochem. 2002, 88, 295.

[7] (a) Breslow, R.; Zhang, X.; Huang, Y. J. Am. Chem. Soc. 1997, 119, 4535.

(b) Yang, J.; Breslow, R. Angew. Chem., Int. Ed. 2000, 39, 2692.

(c) Yang, J.; Gabriele, B.; Belvedere, S.; Huang, Y.; Breslow, R. J. Org. Chem. 2002, 67, 5057.

(d) Breslow, R.; Yan, J. M.; Belvedere, S. Tetrahedron Lett. 2002, 43, 363.  

(e) Breslow, R.; Yang, J.; Yan, J. M. Tetrahedron 2002, 58, 653.  

[8] (a) Ji, H.-B. Eur. J. Org. Chem. 2003, 3659

(b) Ji, H.-B.; Shi, D.-P.; Shao, M.; Li, Z.; Wang, L.-F. Tetrahedron Lett. 2005, 46, 2517.  

(c) Chen, H.-Y.; Ji, H.-B. AIChE J. 2010, 56, 466.

(d) Chen, H.-Y.; Ji, H.-B.; Zhou, X.-T.; Wang, L.-F. Tetrahedron 2010, 66, 9888.  

[9] Frisch, M.-J.; Trucks, G.-W.; Schlegel, H.-B.; Scuseria, G.-E.; Robb, M.-A.; Cheeseman, J.-R.; Montgomery, J.-A., Jr.; Vreven, T.; Kudin, K.-N.; Burant, J.-C.; Millam, J.-M.; Iyengar, S.-S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.-A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.-E.; Hratchian, H.-P.; Cross, J.-B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.-E.; Yazyev, O.; Austin, A.-J.; Cammi, R.; Pomelli, C.; Ochterski, J.-W.; Ayala, P.-Y.; Morokuma, K.; Voth, G.-A.; Salvador, P.; Dannenberg, J.-J.; Zakrzewski, V.-G.; Dapprich, S.; Daniels, A.-D.; Strain, M.-C.; Farkas, O.; Malick, D.-K.; Rabuck, A.-D.; Raghavachari, K.; Foresman, J.-B.; Ortiz, J.-V.; Cui, Q.; Baboul, A.-G.; Clifford, S.; Cioslowski, J.; Stefanov, B.-B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.-L.; Fox, D.-J.; Keith, T.; Al-Laham, M.-A.; Peng, C.-Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.-M.-W.; Johnson, B.; Chen, W.; Wong, M.-W.; Gonzalez, C.; Pople, J.-A. Gaussian W03, Revision D.01; Gaussian, Inc., Wallingford, CT, 2004.  

[10] Xue, F.-T.; Seto, C.-T. Bioorg. Med. Chem. 2006, 14, 8467.  

Outlines

/