Reviews

Biosynthetic Progress of the Tetrahydroisoquinoline Antitumor Antibiotics

  • Tang Mancheng ,
  • Tang Gongli
Expand
  • State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2012-07-05

  Revised date: 2012-07-29

  Online published: 2012-07-18

Supported by

Project supported by the National Natural Science Foundation of China (Nos.81102337, 20832009) and the National Basic Research Program of China (No.2012CB721100)

Abstract

Due to the unique chemical structures and antitumor activity, tetrahydroisoquinoline alkaloids have long been the focus of widespread concern of chemists and biologists. In particular, with the continuous progress of new biotechnology, the biosynthetic studies of this type of antibiotics have made rapid development over the past decade. In this paper, the main achievements of these studies are reviewed, including the biosynthesis of safracin B, saframycin A, naphthyridinomycin, quinocarcin, and ecteinascidin 743, especially the biosynthetic studies of their core tetrahydroisoquinoline ring structure, such as the core structure precursor resources, the biosynthetic pathway of these precursors, and the formation mechanism of the tetrahydroisoquinoline ring.

Cite this article

Tang Mancheng , Tang Gongli . Biosynthetic Progress of the Tetrahydroisoquinoline Antitumor Antibiotics[J]. Chinese Journal of Organic Chemistry, 2012 , 32(9) : 1568 -1576 . DOI: 10.6023/cjoc201207006

References

[1] Kluepfel, D.; Baker, H. A.; Piattoni, G.; Sehgal, S. N.; Sidorowicz, A.; Singh, K.; Vezina, C. J. Antibiot. 1975, 28, 497.  



[2] Scott, J. D.; Williams, R. M. Chem. Rev. 2002, 102, 1669.  



[3] Molinski, T. F.; Dalisay, D. S.; Lievens, S. L.; Saludes, J. P. Nat. Rev. Drug. Discovery 2009, 8, 69.  



[4] Fukuyama, T.; Sachleben, R. A. J. Am. Chem. Soc. 1982, 104, 4957.  



[5] (a) Siengalewicz, P.; Rinner, U.; Mulzer, J. Chem. Soc. Rev. 2008, 37, 2676.   



(b) Liao, X.; Dong, W.; Liu, W.; Chen, S.; Liu, Z. Chin. J. Org. Chem. 2010, 30, 317 (in Chinese)(廖祥伟, 董文芳, 刘伟, 陈世智, 刘站柱, 有机化学, 2010, 30, 317.)



(c) Wang, Y.; Tang, Y.-F.; Liu, Z.-Z.; Chen, S.-Z.; Liang, X.-T. Chin. J. Org. Chem. 2005, 25, 42 (in Chinese) (王晔, 唐叶峰, 刘站柱, 陈世智, 梁晓天, 有机化学, 2005, 25, 42.)



[6] (a) Corey, E. J.; Gin, D. Y.; Kania, R. S. J. Am. Chem. Soc. 1996, 118, 9202.   



(b) Endo, A.; Yanagisawa, A.; Abe, M.; Tohma, S.; Kan, T.; Fukuyama, T. J. Am. Chem. Soc. 2002, 124, 6552.  



(c) Chen, J.; Chen, X.; Zhu, J. J. Am. Chem. Soc. 2006, 128, 87.  



(d) Zheng, S.; Chan, C.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2006, 45, 1754.  



[7] (a) Zmijewski, M. J., Jr.; Mikolajczak, M.; Viswanatha, V.; Hruby, V. J. Am. Chem. Soc. 1982, 104, 4969.   



(b) Zmijewski, M. J., Jr.; Palaniswamy, V. A.; Gould, S. J. J. Chem. Soc., Chem. Commun. 1985, 1261.



(c) Zmijewski, M. J., Jr. J. Antibiot. 1985, 38, 819.  



(d) Palaniswamy, V. A.; Gould, S. J. Am. Chem. Soc. 1986, 108, 5651.  



[8] (a) Mikami, Y.; Takahashi, K.; Yazawa, K.; Arai, T.; Namikoshi, M.; Iwasaki, S.; Okuda, S. J. Biol. Chem. 1985, 260, 344.



(b) Arai, T.; Yazawa, K.; Takahashi, K.; Maeda, A.; Mikami, Y. Antimicrob. Agents Chemother. 1985, 28, 5.  



[9] (a) Kerr, R. G.; Miranda, N. F. J. Nat. Prod. 1995, 58, 1618.  



(b) Jeedigunta, S.; Krenisky, J. M.; Kerr, R. G. Tetrahedron 2000, 56, 3303.  



[10] Pospiech, A.; Cluzel, B.; Bietenhader, J.; Schupp, T. Microbiology 1995, 141, 1793.  



[11] Velasco, A.; Acebo, P.; Gomez, A.; Schleissner, C.; Rodriguez, P.; Aparicio, T.; Conde, S.; Munoz, R.; De La Calle, F.; Luis Garcia, J.; Sanchez-Puelles, J. M. Mol. Microbiol. 2005, 56, 144.



[12] Li, L.; Deng, W.; Song, J.; Ding, W.; Zhao, Q. F.; Peng, C.; Song, W. W.; Tang, G. L.; Liu, W. J. Bacteriol. 2008, 190, 251.  



[13] Rath, C. M.; Janto, B.; Earl, J.; Ahmed, A.; Hu, F. Z.; Hiller, L.; Dahlgren, M.; Kreft, R.; Yu, F.; Wolff, J. J.; Kweon, H. K.; Christiansen, M. A.; Håkansson, K.; Williams, R. M.; Ehrlich, G. D.; Sherman, D. H. ACS Chem. Biol. 2011, 6, 1244.  



[14] Koketsu, K.; Minami, A.; Watanabe, K.; Oguri, H.; Oikawa, H. Curr. Opin. Chem. Biol. 2012, 16, 142.  



[15] Fu, C.-Y.; Tang, M.-C.; Peng, C.; Li, L.; He, Y.-L.; Liu, W.; Tang, G.-L. J. Microbiol. Biotechnol. 2009, 19, 439.  



[16] Tang, M.-C.; Fu, C.-Y.; Tang, G.-L. J. Biol. Chem. 2012, 287, 5112.  



[17] Nelson, J. T.; Lee, J.; Sims, J. W.; Schmidt, E. W. Appl. Environ. Microbiol. 2007, 73, 3575.  



[18] Peng, C.; Pu, J.-Y.; Song, L.-Q.; Jian, X.-H.; Tang, M.-C.; Tang, G.-L. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 8540.  



[19] Hawkins, K. M.; Smolke, C. D. Nat. Chem. Biol. 2008, 4, 564.  



[20] Koketsu, K.; Watanabe, K.; Suda, H.; Oguri, H.; Oikawa, H. Nat. Chem. Biol. 2010, 6, 408.  



[21] (a) Cuevas, C.; Francesch, A. Nat. Prod. Rep. 2009, 26, 322.   



(b) Cuevas, C.; Pérez, M.; Martín, M. J.; Chicharro, J. L.; Fernández-Rivas, C.; Flores, M.; Francesch, A.; Gallego, P.; Zarzuelo, M.; de La Calle, F.; García, J.; Polanco, C.; Rodríguez, I.; Manzanares, I. Org. Lett. 2000, 2, 2545.  

Outlines

/