Reviews

Progress on Unsymmetrical Hybrid Chiral Phosphine-phosphoramidite Ligands and Their Application in Asymmetric Catalytic Reactions

  • Hou Chuanjin ,
  • Liu Xiaoning ,
  • Xia Ying ,
  • Hu Xiangping
Expand
  • a School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034;
    b Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023

Received date: 2012-05-30

  Revised date: 2012-07-17

  Online published: 2012-07-18

Supported by

Project supported by the Planned Science and Technology Project of Dalian City (No. 2011J21DW010), and the Scientific Research Project of Department of Education of Liaoning Province (No. L2010048).

Abstract

Unsymmetrical hybrid chiral phosphine-phosphoramidite ligands have the advantages of easy accessibility, modularity and stability toward air and moisture, which make them highly appealing for asymmetric catalysis. These ligands have been found widespread utility in asymmetric catalysis, such as hydrogenation, hydroformylation, allylic alkylation, hydrophosphorylation, [3+2] cycloaddition, 1,4-addition and 1,4-reduction. The types, synthesis and applications of chiral phosphine-phosphoramidite ligands are reviewed.

Cite this article

Hou Chuanjin , Liu Xiaoning , Xia Ying , Hu Xiangping . Progress on Unsymmetrical Hybrid Chiral Phosphine-phosphoramidite Ligands and Their Application in Asymmetric Catalytic Reactions[J]. Chinese Journal of Organic Chemistry, 2012 , 32(12) : 2239 -2247 . DOI: 10.6023/cjoc201205035

References

[1] Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. Comprehensive Asymmetric Catalysis, Springer, Berlin, 1999.

[2] Ojima, I. Catalytic Asymmetric Synthesis, Wiley-VCH, Weinheim, 2000.

[3] Thommen, M.; Hlaser, H.-U. In Phosphorus Ligands in Asymmetric Catalysis, Ed.: Brner A., Wiley-VCH, Weinheim, 2008.

[4] Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.

[5] Blaser, H.-U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner, H.; Studer, M. Adv. Synth. Catal. 2003, 345, 103.

[6] Zhang, W.; Chi, Y.; Zhang, X. Acc. Chem. Res. 2007, 40, 1278.

[7] Dang, T. P.; Kagan, H. B. J. Chem. Soc., Chem. Commun. 1971, 481.

[8] Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachman, G. L.; Weinkauff, D. J. J. Am. Chem. Soc. 1977, 99, 5946.

[9] Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito, T.; Souchi, T.; Noyori, R. J. Am. Chem. Soc. 1980, 102, 7932.

[10] Berthod, M.; Migani, G.; Woodward, G.; Lemaire, M. Chem. Rev. 2005, 105, 1801.

[11] Ding, K.; Guo, H.; Li, X.; Yuan, Y.; Wang, Y. Top. Catal. 2005, 35, 105.

[12] Ding, K.; Li, X.; Ji, B.; Guo, H.; Kitamura, M. Curr. Org. Synth. 2005, 2, 499.

[13] Wang, C.-J.; Liang, G.; Xue, Z.-Y.; Gao, F. J. Am. Chem. Soc. 2008, 130, 17250.

[14] Tang, W.; Xu, L.; Fan, Q.-H.; Wang, J.; Fan, B.; Zhou, Z.; Lam, K.-H.; Chan, A. S. C. Angew. Chem., Int. Ed. 2009, 48, 9135.

[15] Arshad, N.; Kappe, C. O. Adv. Heterocycl. Chem. 2010, 99, 33.

[16] Burk, M. J. J. Am. Chem. Soc. 1991, 113, 8518.

[17] Burk, M. J.; Feaster, J. E.; Nugent, W. A.; Hariow, R. L. J. Am. Chem. Soc. 1993, 115, 10125.

[18] Burk, M. J.; Bienewald, F.; Harris, M.; Zanotti-Gerosa, A. Angew. Chem., Int. Ed. 1998, 37, 1931.

[19] Tang, W.; Zhang, X. Angew. Chem., Int. Ed. 2002, 41, 612.

[20] Liu, D.; Zhang, X. Eur. J. Org. Chem. 2005, 646.

[21] Shang, G.; Yang, Q.; Zhang, X. Angew. Chem., Int. Ed. 2006, 45, 6360.

[22] Gridnev, I. D.; Imamoto, T.; Hoge, G.; Kouchi, M.; Takahashi, H. J. Am. Chem. Soc. 2008, 130, 2560.

[23] Zhang, X.; Huang, K.; Hou, G.; Cao, B.; Zhang, X. Angew. Chem., Int. Ed. 2010, 49, 6421.

[24] Boeda, T.; Beneyton, T.; Crévisy, C. Mini-Rev. Org. Chem. 2008, 5, 96.

[25] Eberhardt, L.; Armspach, D.; Harrowfield, J.; Matt, D. Chem. Soc. Rev. 2008, 839.

[26] Hu, X.-P.; Wang, D.-S.; Yu, C.-B.; Zhou, Y.-G.; Zheng, Z. Top. Organomet. Chem. 2011, 36, 343.

[27] Wassenaar, J.; Reek, J. N. H. Org. Biomol. Chem. 2011, 9, 1704.

[28] Franciò, C.; Faraone, F.; Leitner, W. Angew. Chem., Int. Ed. 2000, 39, 1428.

[29] Wassenaar, J.; van Zutphen, S.; Mora, G.; Floch, P. L.; Siegler, M. A.; Spek, A. L.; Reek, J. N. H. Organometallics 2009, 28, 2724.

[30] Hu, X.-P.; Zheng, Z. Org. Lett. 2004, 6, 3585.

[31] Jia, X.; Li, X.; Lam, W. S.; Kok, S. H. L.; Xu, L.; Lu, G.; Yeung, C.-H.; Chan, A. S. C. Tetrahedron: Asymmetry 2004, 15, 2273.

[32] Huang, J.-D.; Hu, X.-P.; Duan, Z.-C.; Zeng, Q.-H.; Yu, S.-B.; Deng, J.; Wang, D.-Y.; Zheng, Z. Org. Lett. 2006, 8, 4367.

[33] Zhang, W.; Zhang, X. Angew. Chem., Int. Ed. 2006, 45, 5515.

[34] Balogh, S.; Farkas, G.; Madarász, J.; Szöll?sy, Á.; Kovács, J.; Darvas, F.; Ürge, L.; Bakos, J. Green. Chem. 2012, 14, 1146.

[35] 35 Qiu, M.; Wang, D.-Y.; Hu, X.-P.; Huang, J.-D.; Yu, S.-B.; Deng, J.; Duan, Z.-C.; Zheng, Z. Tetrahedron: Asymmetry 2009, 20, 210.

[36] Pullmann, T.; Engendahl, B.; Zhang, Z.; Hoelscher, M.; Zanotti- Gerosa, A.; Dyke, A.; Francio, G.; Leitner, W. Chem. Eur. J. 2010, 16, 7517.

[37] Hu, X.-P.; Zheng, Z. Org. Lett. 2005, 7, 419.

[38] Zhou, X.-M.; Huang, J.-D.; Luo, L.-B.; Zhang, C.-L.; Hu, X.-P.; Zheng, Z. Org. Biomol. Chem. 2010, 8, 2320.

[39] Vallianatou, K. A.; Kostas, I. D.; Holz, J.; Börner, A. Tetrahedron Lett. 2006, 47, 7947.

[40] Eggenstein, M.; Thomas, A.; Theuerkauf, J.; Francio, G.; Leitner, W. Adv. Synth. Catal. 2009, 351, 725.

[41] Schäffner, B.; Schäffner, F.; Verevkin, S. P.; Börner, A. Chem. Rev. 2010, 110, 4554.

[42] Zhang, W.; Zhang, X. J. Org. Chem. 2007, 72, 1020.

[43] Wassenaar, J.; Reek, J. N. H. J. Org. Chem. 2009, 74, 8403.

[44] Wassenaar, J.; Kuil, M.; Lutz, M.; Spek, A. L.; Reek, J. N. H. Chem. Eur. J. 2010, 16, 6509.

[45] Wang, D.-Y.; Hu, X.-P.; Huang, J.-D.; Deng, J.; Yu, S.-B.; Duan, Z.-C.; Xu, X.-F.; Zheng, Z. Angew. Chem., Int. Ed. 2007, 46, 7810.

[46] Qiu, M.; Hu, X.-P.; Wang, D.-Y.; Deng, J.; Huang, J.-D.; Yu, S.-B.; Duan, Z.-C.; Zheng, Z. Adv. Synth. Catal. 2008, 350, 1413.

[47] Yu, S.-B.; Huang, J.-D.; Wang, D.-Y.; Hu, X.-P.; Deng, J.; Duan, Z.-C.; Zheng, Z. Tetrahedron: Asymmetry 2008, 19, 1862.

[48] Burk, S.; Franciò, G.; Leitner, W. Chem. Commun. 2005, 3460.

[49] Wassenaar, J.; Reek, J. N. H. Dalton Trans. 2007, 3750.

[50] Wassenaar, J.; de Bruin, B.; Reek, J. N. H. Organometallics 2010, 29, 2767.

[51] Chikkali, S. H.; Bellini, R.; de Bruin, B.; van der Vlugt, J. I.; Reek, J. N. H. J. Am. Chem. Soc. 2012, 134, 6607.

[52] Yan, Y.; Zhang, X. J. Am. Chem. Soc. 2006, 128, 7198.

[53] Nozaki, K.; Sakai, N.; Nanno, T.; Higashijima, T.; Mano, S.; Horiuchi, T.; Takaya, H. J. Am. Chem. Soc. 1997, 119, 4413.

[54] Zhang, X.; Cao, B.; Yan, Y.; Yu, S.; Ji, B.; Zhang, X. Chem Eur. J. 2010, 16, 871.

[55] Zhang, X.; Cao, B.; Yu, S.; Zhang, X. Angew. Chem., Int. Ed. 2010, 49, 4047.

[56] Wassenaar, J.; van Zutphen, S.; Mora, G.; Floch, L. P.; Siegler, M. A.; Spek, A. L.; Reek, J. N. H. Organometallics 2009, 28, 2724.

[57] Wassenaar, J.; Jansen, E.; van Zeist, W.-J.; Bickelhaupt, F. M.; Siegler, M. A.; Spek, A. L.; Reek, J. N. H. Nat. Chem. 2010, 2, 417.

[58] Shulyupin, M. O.; Franciò, G.; Beletskaya, I. P.; Leitner, W. Adv. Synth. Catal. 2005, 347, 667.

[59] Yu, S.-B.; Hu, X.-P.; Deng, J.; Wang, D.-Y.; Duan, Z.-C.; Zheng, Z. Tetrahedron: Asymmetry 2009, 20, 621.

[60] Boeda, F.; Rix, D.; Clavier, H.; Crévisy, C.; Mauduit, M. Tetrahedron: Asymmetry 2006, 17, 2726.

[61] Hou, C.-J.; Guo, W.-L.; Hu, X.-P.; Deng, J.; Zheng, Z. Tetrahedron: Asymmetry 2011, 22, 195.

[62] Hou, C.-J.; Wang, Y.-H.; Zheng, Z.; Xu, J.; Hu, X.-P. Org. Lett. 2012, 14, 3554.

[63] Blaser, H.-U.; Buser, H.-P.; Loers, K.; Hanreich, R.; Jalett, H. P.; Jelsch, E.; Pugin, B.; Schneider, H. D.; Spindler, F.; Wagmann, A. Chimia 1999, 53, 275. Blaser, H.-U.; Malan, C.; Pugin, B.; Spinder, F.; Steiner, H.; Studer, M. Adv. Synth. Catal. 2003, 345, 103.

Outlines

/