Reviews

Molecular Capsules Based on Common Macrocycles Self-Assembly

  • Zheng Rui ,
  • Liang Danxia ,
  • Yu Xuetao ,
  • Chen Rener ,
  • Jiang Huajiang ,
  • Zhou Qizhong
Expand
  • Department of Chemistry, Taizhou University, Taizhou 317000

Received date: 2012-09-03

  Revised date: 2012-09-20

  Online published: 2012-10-11

Supported by

Project supported by the National Natural Science Foundation of China (No. 21172166) and the Natural Science Foundation of of Zhejiang Province (No. Y4100783).

Abstract

Molecular capsules are amazing and fascinating because of their unusual structure and nanospaces. These unique microenvironments and nano-structures ultimately ensure their potential for applications in materials science, biological science, drug delivery and catalysis. Molecular capsules could be constructed by covalent bonds or non-covalent bonds with many kinds of different components. This article describes the syntheses and properties of a library of diverse molecular capsules by non-covalent bonds with common macrocycles, which covers (i) cyclodextrins based systems, (ii) calix[n]arenes based systems, (iii) calic[n]pyrroles based systems, (iv) porphyrins based systems, (v) cyclotriveratrylene (CTV) based systems, and finally (vi) cucurbit[n]urils based systems. These building blocks afford molecular capsules based on the self-assembly of several units, which is primarily driven by the interplay of weak attractions that act over short distances between molecules, including hydrogen bonds, electrostatic interaction, aromatic π-stacking, van der Waal's interactions, etc. These versatile molecular capsules providing different nanospaces, some of which are controllable and adjustable, could encapsulate different kinds of interesting guests in solution or solid states.

Cite this article

Zheng Rui , Liang Danxia , Yu Xuetao , Chen Rener , Jiang Huajiang , Zhou Qizhong . Molecular Capsules Based on Common Macrocycles Self-Assembly[J]. Chinese Journal of Organic Chemistry, 2013 , 33(03) : 504 -516 . DOI: 10.6023/cjoc201209001

References

[1] Conn, M. M.; Rebek, J. Jr. Chem. Rev. 1997, 97,1647.

[2] Ong, W.; G髆ez-Kaifer, M.; Kaifer, A. E. Org. Lett. 2002, 4, 1791.

[3] Liu, M.; Li, S.; Zhang, M.; Zhou, Q. Z.; Wang, F.; Hu, M.; Fronczek, F. R.; Li, N.; Huang, F. Org. Biomol. Chem. 2009, 7, 1288.

[4] Wang, F.; Zheng, B.; Zhu, K.; Zhou, Q.; Zhai, C.; Li, S.; Li, N.; Huang, F. Chem. Commun. 2009, 4375.

[5] Yu, G.; Zhang, Z. B.; Han, C.; Xue, M.; Zhou, Q. Z.; Huang, F. H. Chem. Commun. 2012, 48, 2958.

[6] Yan, X. Z.; Wei, P. F.; Xia, B. Y.; Huang, F. H.; Zhou, Q. Z. Chem. Commun. 2012,48, 4968.

[7] Shi, J.; Chen, Y.; Wang, Q.; Liu, Y. Adv. Mater. 2010, 22, 1.

[8] Cram, D. G. Science 1983, 219, 1177.

[9] Yamanaka, M.; Rebek, J. Jr. Chem. Commun. 2004, 1690.

[10] Körner, S. K.; Tucci, F. C.; Rudkevich, D. M.; Heinz, T.; Rebek, J. Jr. Chem.-Eur. J. 2000 , 6, 187.

[11] Ziegler, M.; Brumaghim, J. L.; Raymond, K. N. Angew. Chem., Int. Ed. 2000, 39, 4119.

[12] Yoshizawa, M.; Kusukawa, T.; Fujita, M.; Yamaguchi, Y. J. Am. Chem. Soc. 2000, 122, 6311.

[13] Boris Breiner, B.; Clegg, J. K.; Nitschke, J. R. Chem. Sci. 2011, 2, 51.

[14] Rebek, J. Jr. Angew. Chem., Int. Ed. 2005, 44, 2068.

[15] Fiedler, D.; Leung, D. H.; Bergman, R. G.; Raymond, K. N. Acc. Chem. Res. 2005, 38, 349.

[16] Yoshizawa, M.; Klosterman, J. K.; Fujita, M. Angew. Chem., Int. Ed. 2009, 48, 3418 .

[17] Pluth, M. D.; Bergman, R. G.; Raymond, K. N. Acc. Chem. Res. 2009, 42, 1650 .

[18] Brunsveld, L.; Folmer, B. J.; Meijer, E. W.; Sijbesma, R. P. Chem. Rev. 2001, 101, 4071.

[19] Prins, L. J.; Reinhoudt, D. N.; Timmerman, P. Angew. Chem., Int. Ed. 2001, 40,2382.

[20] Bong, D. T.; Clark, T. D.; Granja, J. R.; Ghadiri, M. R. Angew. Chem., Int. Ed. 2001, 40, 988.

[21] Balzani, V.; Cred, A.; Raymo, F. M.; Stoddart, J. F. Angew. Chem., Int. Ed. 2000, 39, 3348.

[22] Whitesides, G. M.; Boncheva, M. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 4769.

[23] Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M.; J. Am. Chem. Soc. 2001, 123, 7677.

[24] Pease, A. R.; Jeppesen, J. O.; Stoddart, J. F.; Luo, Y.; Collier, C. P.; Heath, J. R. Acc. Chem. Res. 2001, 34, 433.

[25] Hamelin, B.; Jullien, L.; Derouet, C.; Penhoat, C. H.; Berthault, P. J. Am. Chem. Soc. 1998, 120, 8438 .

[26] Bakirci, H.; Nau, W. M. J. Org. Chem. 2005, 70, 4506 .

[27] Anczewski, W.; Dodziuk, H.; Ejchart, A. Chirality, 2003, 15, 654.

[28] Toro-S醤chez, C. L. D.; Ayala-Zavala, J. F.; Machi, L.; Santacruz, H.; Villegas-Ochoa, M. A.; Alvarez-Parrilla, E.; Gonz醠ez-Aguilar, G. A. J. Incl. Phenom. Macrocycl. Chem. 2010, 67, 431.

[29] Gale, P. A.; Anzenbacher, P.; Sessler, J. L. Coord. Chem. Rev. 2001, 222, 57.

[30] Dalgarno, S. J.; Raston, C. L. Dalton Trans. 2003, 287.

[31] Atwood, J. L.;Barbour, L. J.; Hardie, M. J.; Raston, C. L.; Stattonand, M. N.; Webb, H. R. CrystEngComm 2001, 4, 1.

[32] Hardie, M. J.; Makha, M.; Raston, C. L. Chem. Commun. 1999, 2409.

[33] Kvasnica, M.; Chapin, J. C.; Purse, B. W. Angew. Chem., Int. Ed. 2011, 50, 2244.

[34] Palmer, L. C.; Rebek, J. Jr. Org. Lett. 2005, 7, 5.

[35] Avram, L.; Cohen, Y. Org. Lett. 2006, 8, 2.

[36] Oshovsky, G. V.; Reinhoudt, D. N.; Verboom, W. J. Am. Chem. Soc. 2006, 128, 5270.

[37] Yamanaka, M.; Kawaharada, M.; Nito, Y.; Takaya, H.; Kobayashi, K. J. Am. Chem. Soc.2011, 133, 16650.

[38] Park, Y. S.; Paek, K. Org. Lett. 2008, 10, 21.

[39] Heinz, T.; Rudkevich, D. M.; Rebek, J. Nature 1998, 394, 764.

[40] Rebek, J. Angew. Chem., Int. Ed. 2005, 44, 2068.

[41] Jeong, K. S.; Tjivikua, T.; Rebek, J. Jr. J. Am. Chem. Soc. 1990, 112, 3215.

[42] Ajami, D.; Rebek, J. J. Am. Chem. Soc. 2006, 128, 5314.

[43] Ajami, D.; Rebek, J. Angew. Chem., Int. Ed. 2007, 46, 9283.

[44] Moon, K.; Chen, W. Z.; Ren, T.; Kaifer, A. E. CrystEngComm 2003, 5, 451.

[45] Piacenza, G.; Beguet, C.; Wimmer, E.; Gallo, R.; Giorgi, M. S. C. Cryst. Struct. Commun. 1997, 53, 1459.

[46] Shivanyuk, A.; Rebek, J. J. Am. Chem. Soc. 2002, 124, 12074.

[47] Ajami, D.; Rebek, J. Jr. Nat. Chem. 2009, 1, 87.

[48] Hou, J. L.; Ajami, D.; Rebek, J. Jr. J. Am. Chem. Soc. 2008, 130, 7810.

[49] Cantillo, D.; Avalos, M.; Babiano, R.; Cintas, P.; Jim閚ez, J.; Palacios, J. C. Org. Biomol. Chem. 2011, 9, 7638.

[50] Cram, D. J.; Karbach, S.; Kim, Y. H.; Baczynskyj, L.; Kallemeyn, G. W. J. Am. Chem. Soc.1985, 107, 2575.

[51] Chen, J. Y. C.; Jayaraj, N.; Jockusch, S.; Ottaviani, M. F.; Ramamurthy, V.; Turro, N. J. Am. Chem. Soc. 2008, 130, 7206.

[52] Natarajan, A.; Kaanumalle, L. S.; Jockusch, S.; Gibb, C. L. D.; Gibb, B. C.; Turro, N. J.; Ramamurthy, V. J. Am. Chem. Soc. 2007, 129, 4132.

[53] Parthasarathy, A.; Kaanumalle, L. S.; Ramamurthy, V. Org. Lett. 2007, 9, 24.

[54] Giles, M. D.; Liu, S.; Emanuel, R. L.; Gibb, B.; Grayson, S. M. J. Am. Chem. Soc. 2008, 130, 14430.

[55] Bruno, G.; Cafeo, G.; Kohnke, F. H.; Nicol, F. Tetrahedron 2007, 63, 10003.

[56] Cafeo, G.; Kohnke, F. H.; Valenti; White, A. J. P. Chem. Eur. J. 2008, 14, 11593.

[57] Gil-Ram靣e, G.; Chas, M.; Balleste, P. J. Am. Chem. Soc. 2010, 132, 2520.

[58] Ballester, P.; Gil-Ram韗ez, G. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 10455.

[59] Chas, M.; Gil-Ram韗ez, G.; Ballester, P. Org. Lett. 2011, 13, 13.

[60] Chas, M.; Gil-Ram韗ez, G.; Escudero-Ad醤, E.; Benet-Buchholz, J.; Ballester, P. Org. Lett. 2010, 12, 8.

[61] Nielsen, K. A.; Cho, W. S.; Sarova, G. H.; Peterse, B. M.; Bond, A. D.; Becher, J.; Jensen, F.; Guldi, D. M.; Sessler, J. L.; Jeppesen, J. O. Angew. Chem., Int. Ed. 2006, 45, 6848.

[62] Wyler, R.; Mendoza, J. D.; Rebek, J. Jr. Angew. Chem., Int. Ed. Engl. 1993, 32, 1699.

[63] Kuroda, Y.; Kawashima, A.; Hayashi, Y.; Ogoshi, H. J. Am. Chem. Soc.1997, 119, 4929.

[64] Schenning, A. P. H. J.; Benneker, F.; Geurts, H. P.; Liu, X. Y.; Nolte, R. J. M. J. Am. Chem. Soc. 1996, 118, 8549.

[65] Nakazawa, J.; Hagiwara, J.; Mizuki, M.; Shimazaki, Y.; Tani, F.; Naruta, Y. Angew. Chem., Int. Ed. 2005, 44 , 3744.

[66] Johnston, M. R.; Lyons, D. M. Taylor Francis 2005, 1061.

[67] Reek, J. N. H.; Schenning, A. P. H. J.; Bosman, A. W.; Meijer, E. W.; Crossley, M. J. Chem. Commun. 1998, 11.

[68] Nakazawa, J.; Mizuki, M.; Shimazaki, Y.; Tani, F.; Naruta, Y.Org. Lett. 2006, 8, 19.

[69] Ikeda, A.; Ayabe, M.; Shinkai, S.; Sakamoto, S.; Yamaguchi, K. Org. Lett. 2000, 2, 23.

[70] Johnston, M. R.; Latter, M. J.; Warrener, R. N. Org. Lett. 2002, 4, 13.

[71] Lee, S. B.; Hong, J. I. Tetrahedron Lett. 1996, 37, 8501.

[72] Sumby, C. J.; Hardie, M. J. Angew. Chem., Int. Ed. 2005, 44, 6395.

[73] Ahmad, R.; Hardie, M. J. Cryst. Growth Des. 2003, 3, 493.

[74] Kataoka, K.; James, T. D.; Kubo, Y. J. Am. Chem. Soc. 2007, 129, 15126.

[75] Zhang, Y. Q.; Zhu, Q. J.; Xue, S. F.; Tao, Z. Molecules 2007, 12, 1325.

[76] Thu閞y, P. Cryst. Growth Des. 2009, 9, 2.

[77] Liu, J. X.; Long, L. S.; Huang, R. B.; Zheng, L. S. Cryst. Growth Des. 2006, 6, 11.

[78] Liu, J.; Gu, Y. F.; Lin, R.; Yao, W.; Liu, X.; Zhu, J. Supramol. Chem. 2010, 22, 130.

[79] Xiao, X.; Chen, K.; Xue, S. F.; Zhu, Q. J.; Tao, Z.; Wei, G. J. Mol. Struct. 2010, 969, 216.

[80] Kushwaha, S.; Rao, S. A.; Sudhakar, P. P. Inorg. Chem. 2012, 51, 267.

[81] Liu, J. X.; Long, L .S.; Huang, R. B.; Zheng, L. S. Inorg. Chem. 2000, 46, 24.

[82] Zhang, Y. Q.; Zeng, J. P.; Zhu, Q. J.; Xue, S. F.; Tao, Z. J. Mol. Struct. 2009, 929, 167.

[83] Choudhury, S. D.; Mohanty, J.; Pal, H.; Bhasikuttan, A. C. J. Am. Chem. Soc. 2010, 132, 1395.

[84] Ajami, D.; Rebek, J. Jr. Acc. Chem. Res. 2012, DOI: 10.1021/ar300038r.

[85] Arunachalam, M.; Ghosh, P. Chem. Commun. 2011, 47, 8477.

[86] Rebek, J., Jr. Chem. Commun. 2007, 2777.

[87] Rieth, S.; Hermann, K.; Wang, B. Y.; Badjic, J. D. Chem. Soc. Rev. 2011, 40, 1609.

[88] Conn, M. M.; Rebek, J. Jr. Chem. Rev. 1997, 97, 1647.

Outlines

/