Reviews

Progress in the Transition-Metal Catalyzed Oxidation of Tertiary Amines

  • Li Yuanming ,
  • Ma Lina ,
  • Li Zhiping
Expand
  • Department of Chemistry, Renmin University of China, Beijing 100872

Received date: 2013-01-25

  Revised date: 2013-03-19

  Online published: 2013-03-22

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21072223, 21272267), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (No. 10XNL017).

Abstract

The oxidation of tertiary amines is an improtant process in nature. In chemistry, organic chemists have made great efforts to study on the simulation of enzymatic funtion of oxidation with transition metal catalyst. It provide us new and efficient protocols for the synthesis of nitrogen compounds. The catalytic reactions also enhances our understanding the mechanism of the oxidation of tertiary amins in living system. During this decade, significant progress has been made in the transition metal catalyzed oxidation of tertiary amines. This review is summarized by five types of oxidative transformation of tertiary amines: (1) synthesis of N-oxides of tertiary amines; (2) oxidative Mannich reaction of tertiary amines; (3) oxidative demethylation of tertiary amines; (4) oxidative amidation of tertiary amines; (5) oxidative transformation of the substituents of tertiary amines.

Cite this article

Li Yuanming , Ma Lina , Li Zhiping . Progress in the Transition-Metal Catalyzed Oxidation of Tertiary Amines[J]. Chinese Journal of Organic Chemistry, 2013 , 33(04) : 704 -714 . DOI: 10.6023/cjoc201301065

References

[1] (a) Meunier, B.; de Visser, S. P.; Shaik, S. Chem. Rev. 2004, 104, 3947.
(b) Ortiz de Montellano, P. R. Cytochrome P-450, Structure, Mechanism, and Biochemistry, 2nd ed., Plenum Press, New York, 1995.
(c) Dawson, J. H.; Sono, M. Chem. Rev. 1987, 87, 1255.

[2] (a) Scheuermann, C. J. Chem. Asian J. 2010, 5, 436.
(b) Bernier, D.; Wefelscheid, U. K.; Woodward, S. Org. Prep. Proced. Int. 2009, 41, 173.
(c) Murahashi, S.-I.; Zhang, D. Chem. Soc. Rev. 2008, 37, 1490.
(d) Murahashi, S.-I. Angew. Chem., Int. Ed. 1995, 34, 2443.
(e) Li, C.-J.; Li, Z. Pure Appl. Chem. 2006, 78, 935.

[3] (a) Guo, X. W.; Li, Z.; Li, C.-J. Prog. Chem. 2010, 22, 1434.
(b) Li, C.-J. Acc. Chem. Res. 2009, 42, 335.
(c) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 3672.

[4] Ling, Z.; Yun, L.; Liu, L.; Wu, B.; Fu, X. Chem. Commun. 2013, DOI: 10.1039/c2cc37263k.

[5] Li, Y.; Jia, F.; Li, Z. Chem. Eur. J. 2013, 19, 82.

[6] (a) Zhang, L.; Peng, C.; Zhao, D.; Wang, Y.; Fu, H.-J.; Shen, Q.; Li, J.-X. Chem. Commun. 2012, 48, 5928.
(b) Li, H. J.; He, Z. H.; Guo, X. W.; Li, W. J.; Zhao, X. H.; Li, Z. Org. Lett. 2009, 11, 4176.

[7] Pinner, A.; Wolffenstein, R. Ber. Dtsch. Chem. Ges. 1892, 25, 1428.

[8] Schroeder, M. Chem. Rev. 1980, 80, 187.

[9] Griffith, W. P.; Ley, S. V.; Whitcombe, G. P.; White, A. D. J. Chem. Soc., Chem. Commun. 1987, 1625.

[10] Godfrey, A. G.; Ganem, B. Tetrahedron Lett. 1990, 31, 4825.

[11] Ping, L.; Li, L.; Ping, L. Deterg. Cosmet. 2005, 28, 19 (in Chinese).
(李萍, 李丽, 杨旭, 日用化学品科学, 2005, 28, 19.)

[12] Cope, A. C.; Ciganek, E. Org. Synth. 1963, 4, 612.

[13] Albini, A. Synthesis 1993, 263.

[14] Malkov, A. V.; Kočovský, P. Eur. J. Org. Chem. 2007, 29.

[15] VanRheenen, V.; Cha, D. Y.; Hartley, W. M. Org. Synth. 1988, 6, 342.

[16] Wenkert, D.; Angell, E. C.; Chen, T.-F.; Ramachandran, K. Synth. Commun. 1990, 20, 447.

[17] (a) Rout, L.; Punniyamurthy, T. Adv. Synth. Catal. 2005, 347, 1958.
(b) Choudary, B. M.; Bharathi, B.; Reddy, C. V.; Kantam, M. L.; Raghavan, K. V. Chem. Commun. 2001, 1736.

[18] (a) Kluge, R.; Schulz, M.; Liebsch, S. Tetrahedron 1996, 52, 5773.
(b) Mosher, H. S.; Turner, L.; Carlsmith, A. Org. Synth. 1963, 4, 828.

[19] Zajac, W. W.; Walters, T. R.; Darcy, M. G. J. Org. Chem. 1988, 53, 5856.

[20] Ferrer, M.; Sánchez-Baeza, F.; Messeguer, A. Tetrahedron 1997, 53, 15877.

[21] Jain, S. L.; Sain, B. Angew. Chem., Int. Ed. 2003, 42, 1265.

[22] Jain, S. L.; Sain, B. Chem. Commun. 2002, 1040.

[23] Naota, T.; Takaya, H.; Murahashi, S.-I. Chem. Rev. 1998, 98, 2599.

[24] Catino, A. J.; Nichols, J. M.; Nettles, B. J.; Doyle, M. P. J. Am. Chem. Soc. 2006, 128, 5648.

[25] (a) Murahashi, S.-I.; Nakae, T.; Terai, H.; Komiya, N. J. Am. Chem. Soc. 2008, 130, 11005.
(b) Murahashi, S.-I.; Komiya, N.; Terai, H. Angew. Chem., Int. Ed. 2005, 44, 6931.
(c) Murahashi, S.-I.; Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem. Soc. 2003, 125, 15312.

[26] Han, W.; Ofial, A. R. Chem. Commun. 2009, 5024.

[27] (a) Alagiri, K.; Prabhu, K. R. Org. Biomol. Chem. 2012, 10, 835.
(b) Zhang, Y.; Peng, H.; Zhang, M.; Cheng, Y.; Zhu, C. Chem. Commun. 2011, 47, 2354.

[28] Reddy, K. H. V.; Satish, G.; Reddy, V. P.; Kumar, B. S. P. A.; Nageswar, Y. V. D. RSC Adv. 2012, 2, 11084.

[29] Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 6968.

[30] (a) Baslé, O.; Borduas, N.; Dubois, P.; Chapuzet, J. M.; Chan, T.-H.; Lessard, J.; Li, C.-J. Chem. Eur. J. 2010, 16, 8162.
(b) Dombrowski, G. W.; Dinnocenzo, J. P.; Zielinski, P. A.; Farid, S.; Wosinska, Z. M.; Gould, I. R. J. Org. Chem. 2005, 70, 3791.

[31] Wang, M.-Z.; Zhou, C.-Y.; Wong, M.-K.; Che, C.-M. Chem. Eur. J. 2010, 16, 5723.

[32] Liu, P.; Zhou, C.-Y.; Xiang, S.; Che, C.-M. Chem. Commun. 2010, 46, 2739.

[33] Ohta, M.; Quick, M. P.; Yamaguchi, J.; Wunsch, B.; Itami, K. Chem. Asian J. 2009, 4, 1416.

[34] Huang, L.; Niu, T.; Wu, J.; Zhang, Y. J. Org. Chem. 2011, 76, 1759.

[35] Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2004, 126, 11810.

[36] Niu, M.; Yin, Z.; Fu, H.; Jiang, Y.; Zhao, Y. J. Org. Chem. 2008, 73, 3961.

[37] Volla, C. M. R.; Vogel, P. Org. Lett. 2009, 11, 1701.

[38] (a) Li, Z.; MacLeod, P. D.; Li, C.-J. Tetrahedron: Asymmetry 2006, 17, 590.
(b) Li, Z.; Li, C.-J. Org. Lett. 2004, 6, 4997.

[39] (a) Zhang, G.; Ma, Y.; Wang, S.; Zhang, Y.; Wang, R. J. Am. Chem. Soc. 2012, 134, 12334.
(b) Zhang, G.; Zhang, Y.; Wang, R. Angew. Chem., Int. Ed. 2011, 50, 10429.

[40] Kumaraswamy, G.; Murthy, A. N.; Pitchaiah, A. J. Org. Chem. 2010, 75, 3916.

[41] Huang, L.; Zhang, X.; Zhang, Y. Org. Lett. 2009, 11, 3730.

[42] Chu, L.; Zhang, X.; Qing, F.-L. Org. Lett. 2009, 11, 2197.

[43] Shen, Y.; Li, M.; Wang, S.; Zhan, T.; Tan, Z.; Guo, C.-C. Chem. Commun. 2009, 953.

[44] Yang, F.; Li, J.; Xie, J.; Huang, Z.-Z. Org. Lett. 2010, 12, 5214.

[45] Lucet, D.; Le Gall, T.; Mioskowski, C. Angew. Chem., Int. Ed. 1998, 37, 2580.

[46] Basle, O.; Li, C.-J. Green Chem. 2007, 9, 1047.

[47] Murahashi, S.; Naota, T.; Yonemura, K. J. Am. Chem. Soc. 1988, 110, 8256.

[48] Basle, O.; Li, C.-J. Chem. Commun. 2009, 4124.

[49] Han, W.; Ofial, A. R. Chem. Commun. 2009, 6023.

[50] Zhang, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Org. Lett. 2007, 9, 3813.

[51] Ratnikov, M. O.; Doyle, M. P. J. Am. Chem. Soc. 2013, 135, 1549.

[52] (a) Boess, E.; Schmitz, C.; Klussmann, M. J. Am. Chem. Soc. 2012, 134, 5317.
(b) Boess, E.; Sureshkumar, D.; Sud, A.; Wirtz, C.; Farès, C.; Klussmann, M. J. Am. Chem. Soc. 2011, 133, 8106.

[53] (a) Dhineshkumar, J.; Lamani, M.; Alagiri, K.; Prabhu, K. R. Org. Lett. 2013, 15, 1092.
(b) Tanoue, A.; Yoo, W.-J.; Kobayashi, S. Adv. Synth. Catal. 2013, 355, 269.

[54] Zhang, W.; Yang, L.; Wu, L. M.; Liu, Y. C.; Liu, Z. L. J. Lanzhou Univ. (Nat. Sci.) 1998, 34, 120 (in Chinese).
张炜, 杨立, 吴隆民, 刘有成, 刘中立, 兰州大学学报(自然科学版), 1998, 34, 120.

[55] Smith, P. J.; Mann, C. K. J. Org. Chem. 1969, 34, 1821.

[56] Cohen, S. G.; Parola, A.; Parsons, G. H. Chem. Rev. 1973, 73, 141.

[57] (a) Liu, P.; Liu, Y.; Wong, E. L.-M.; Xiang, S.; Che, C.-M. Chem. Sci. 2011, 2, 2187.
(b) Chiavarino, B.; Cipollini, R.; Crestoni, M. E.; Fornarini, S.; Lanucara, F.; Lapi, A. J. Am. Chem. Soc. 2008, 130, 3208.
(c) Dowers, T. S.; Rock, D. A.; Rock, D. A.; Jones, J. P. J. Am. Chem. Soc. 2004, 126, 8868.
(d) Baciocchi, E.; Lanzalunga, O.; Lapi, A.; Manduchi, L. J. Am. Chem. Soc. 1998, 120, 5783.
(e) Murata, S.; Miura, M.; Nomura, M. J. Chem. Soc., Chem. Commun. 1989, 116.
(f) Karasevich, E. I.; Khenkin, A. M.; Shilov, A. E. J. Chem. Soc., Chem. Commun. 1987, 0, 731.
(g) Smith, J. R. L.; Mortimer, D. N. J. Chem. Soc., Chem. Commun. 1985, 64.
(h) Shannon, P.; Bruice, T. C. J. Am. Chem. Soc. 1981, 103, 4580.

[58] (a) Maiti, D.; Narducci Sarjeant, A. A.; Karlin, K. D. J. Am. Chem. Soc. 2007, 129, 6720.
(b) Mahapatra, S.; Halfen, J. A.; Tolman, W. B. J. Am. Chem. Soc. 1996, 118, 11575.
(c) Murahashi, S.; Naota, T.; Miyaguchi, N.; Nakato, T. Tetrahedron Lett. 1992, 33, 6991.
(d) Murahashi, S.; Watanabe, T. J. Am. Chem. Soc. 1979, 101, 7429.

[59] Murata, S.; Suzuki, K.; Tamatani, A.; Miura, M.; Nomura, M. J. Chem. Soc., Perkin Trans. 1 1992, 1387.

[60] Carroll, R. J.; Leisch, H.; Scocchera, E.; Hudlicky, T.; Cox, D. P. Adv. Synth. Catal. 2008, 350, 2984.

[61] (a) Machara, A.; Werner, L.; Endoma-Arias, M. A.; Cox, D. P.; Hudlicky, T. Adv. Synth. Catal. 2012, 354, 613.
(b) Machara, A.; Cox, D. P.; Hudlicky, T. Adv. Synth. Catal. 2012, 354, 2713.

[62] Studer, A. Chem. Eur. J. 2001, 7, 1159.

[63] (a) Xie, Y.; Qian, B.; Xie, P.; Huang, H. Adv. Synth. Catal. 2013, DOI: 10.1002/adsc.201200944.
(b) Guo, S.; Qian, B.; Xie, Y.; Xia, C.; Huang, H. Org. Lett. 2010, 13, 522.

[64] Liu, W. P.; Liu, J. H.; Ogawa, D.; Nishihara, Y.; Guo, X. W.; Li, Z. Org. Lett. 2011, 13, 6272.

[65] Chen, J.; Liu, B.; Liu, D.; Liu, S.; Cheng, J. Adv. Synth. Catal. 2012, 354, 2438.

[66] Wu, W.; Su, W. J. Am. Chem. Soc. 2011, 133, 11924.
Outlines

/