Articles

Synthesis and Photoelectrical Properties of 5,10,15,20-Tetra{4-[(N-carbazyl)butyloxyphenyl]}porphyrin and Its Transition Metal Complexes

  • Wang Binbin ,
  • Shan Ning ,
  • Xia Aiqing ,
  • Wang Yunfang ,
  • Yu Miao ,
  • Shi Tongshun
Expand
  • a College of Chemistry, Jilin University, Changchun 130021;
    b College of Chemistry, Changchun Normal University, Changchun 130032

Received date: 2013-01-29

  Revised date: 2013-03-15

  Online published: 2013-03-22

Supported by

Project supported by the National Natural Science Foundation of China (No. 20801022).

Abstract

A novel 5,10,15,20-tetra{4-[(N-carbazyl)butyloxyphenyl]}porphyrin and its transition metal complexes[M=Co (2), Ni (3), Cu (4), Zn (5)] were prepared and characterized by UV-Vis, 1H NMR, IR, Raman spectra and elemental analyses. Compared with the porphyrin ligand, the number of the absorption bands of the metalloporphyrin complexes decrease, the most remarkable difference was the absence of some Q bands. When the metal ions substituted the protons on the N atoms in pyrrole rings, the symmetry of the molecule was changed from D2h to D4h, therefore their absorption spectra were changed to some extent. The IR bands at 3315 and 966 cm-1 in the free base porphyrin ligand are assigned to the N—H stretching and bending vibration of the porphyrin core, respectively. The N—H stretching and bending vibration disappear in the metallporphyrin complexes, since hydrogen atom in N—H bonding is replaced by transition metal ion. There were high fluorescence intensity and fluorescence quantum yield of the porphyrin ligand and its zinc complex. Fluorescence quantum yield of porphyrin zinc complex was higher than that of ZnTPP. The fluorescence intensity of porphyrin nickel complex was quenched partly but the fluorescence intensity of porphyrin cobalt complex and porphyrin copper complex were quenched completely. This indicates fairly certainly that the spin forbidden process S1~→Tn is predominant for radiationless deactivation of S1 in porphyrin compounds. Contrary to the results of the fluorescence intensity of porphyrin complexes, there were high surface photovoltage of porphyrin cobalt complex and porphyrin copper complex without external field. Competition process was showed between fluorescence intensity and surface photovoltage intensity. Positive external field could increase surface photovoltage intensity of porphyrin complexes. Surface photovoltage spectra of porphyrin complexes were influence by the property of external electric field which indicated that the porphyrin complexes were probably used for photovoltaic materials.

Cite this article

Wang Binbin , Shan Ning , Xia Aiqing , Wang Yunfang , Yu Miao , Shi Tongshun . Synthesis and Photoelectrical Properties of 5,10,15,20-Tetra{4-[(N-carbazyl)butyloxyphenyl]}porphyrin and Its Transition Metal Complexes[J]. Chinese Journal of Organic Chemistry, 2013 , 33(08) : 1810 -1816 . DOI: 10.6023/cjoc201301074

References

[1] (a) Sun, Y.; Hu, X. B.; Li, H. R. Comput. Theor. Chem. 2011, 966, 62.
(b) Abu-Omar, M. M. Dalton Trans. 2011, 40, 3435.
[2] (a) Fukuzumi, S.; Liu, J. Y.; El-Khouly, M. E.; Nq, D. K. Chem. Eur. J. 2011, 17, 1605.
(b) Maligaspe, E.; Kumpulainen, T.; Subbaiyan, N. K.; Zandler, M. E.; Lemmetyinen, H.; Tkachenko, N. V.; D'Souza, F. Phys. Chem. Chem. Phys. 2010, 12, 7434.
(c) Wallin, S.; Monnereau, C.; Blart, E.; Gankou, J. R.; Odobel, F.; Hammarström, L. J. Phys. Chem. A 2010, 114, 1709.
[3] (a) She, C. X.; Lee, S. J.; McGarrah, J. E.; Vura-Weir, J.; Wasielewski, M. R.; Chen, H. N.; Schatz, G. C.; Ratner, M. A.; Hupp, J. T. Chem. Commun. 2010, 46, 547.
(b) Morisue, M.; Morita, T.; Kuroda, Y. Org. Biomol. Chem. 2010, 8, 3457.
[4] (a) Karousis, N.; Sandanayaka, A. S. D.; Hasobe, T. J. Mater. Chem. 2011, 21, 109.
(b) Xiang, N.; Liu, Y. J.; Zhou, W. P.; Huang, H.; Guo, X.; Tan, Z.; Zhao, B.; Shen, P.; Tan, S. T. Eur. Polym. J. 2010, 46, 1084.
(c) Wu, S. L.; Lu, H. P.; Yu, H. T.; Chuang, S. H.; Chiu, C. L.; Lee, C. W.; Diau, E. W. G.; Yeh, C. Y. Energy Environ. Sci. 2010, 3, 949.
[5] (a) Xin, H.; Li, F. Y.; Guan, M.; Huang, C. H.; Sun, M.; Wang, K. Z.; Zhang, Y. A.; Jin, L. P. J. Appl. Phys. 2003, 94, 4729.
(b) Zhang, L. Y.; Li, T. L.; Li, B.; Lei, B. F.; Yue, S. M.; Li, W. L. J. Lumin. 2007, 126, 682.
[6] Li, Y. Q.; Rizzo, A.; Salerno, M.; Mazzeo, M. Appl. Phys. Lett. 2006, 89, 061125.
[7] (a) Lian, W.-H.; Wang, B.-B.; Sun, Y.-Y.; Shan, N.; Yu, L.-X.; Yu, M.; Shi, T.-S. Chin. J. Org. Chem. 2012, 32, 113 (in Chinese).
(连文慧, 王彬彬, 孙园园, 单凝, 于连香, 于苗, 师同顺, 有机化学, 2012, 32, 113.)
(b) Lian, W. H.; Sun, Y. Y.; Wang, B. B.; Shan, N.; Shi, T. S. J. Serb. Chem. Soc. 2012, 77, 335.
[8] Thomas, D. W.; Martell, A. E. J. Am. Chem. Soc. 1956, 78, 1335
[9] Inokuma, Y.; Osuka, A. Org. Lett. 2004, 6, 3663.
[10] Guo, X.-M.; Shi, T.-S.; Su, L.-J. Chem. J. Chin. Univ. 2006, 27, 410 (in Chinese).
(郭喜明, 师同顺, 苏连江, 高等学校化学学报, 2006, 27, 410.)
[11] Sun, Y.-Y.; Lian, W.-H.; Wang, J.-C.; Wang, B.-B.; Shan, N.; Yu, L.-X.; Yu, M.; Shi, T.-S. Acta Chim. Sinica 2011, 69, 2465 (in Chinese)
(孙园园, 连文慧, 王建成, 王彬彬, 单凝, 于连香, 于苗, 师同顺, 化学学报, 2011, 69, 2465).
[12] Sun, E.-J.; Wang, D.; Cheng, X.-L.; Shi, Y.-H.; Shi, T.-S. Chem. J. Chin. Univ. 2007, 28, 1208 (in Chinese).
(孙二军, 王栋, 程秀利, 师宇华, 师同顺, 高等学校化学学报, 2007, 28, 1208.)
[13] Paulat, F.; Franeeth, V. K. K.; Lehnert, N.; Lether, C. Inorg. Chem 2006, 45, 2835.
[14] Quimby, D. J.; Longo, F. R. J. Am. Chem. Soc. 1975, 97, 5111.
[15] Zheng, W. Q.; Shan, N.; Yu, L. X.; Wang, X. Q. Dyes Pigm. 2008, 77, 153.
[16] Zhao, Z. X.; Xie, T. F.; Li, D. M.; Wang, D. J.; Liu, G. F. Synth. Met. 2001, 123, 33.
[17] Guo, X. M.; Shi, T. S. J. Mol. Struct. 2006, 789, 8.
Outlines

/