Notes

Graphite Oxide-Catalyzed Esterification and Transesterification

  • Qi Junmei ,
  • Xu Yuelong ,
  • Ma Ning ,
  • Sun Feifei
Expand
  • Department of Chemistry, School of Science, Tianjin University, Tianjin 300072

Received date: 2012-12-25

  Revised date: 2013-02-28

  Online published: 2013-04-03

Supported by

Project supported by the National Natural Science Foundation of China (No. 20802049).

Abstract

Graphite oxide (GO) was involved in the esterification of carboxylic acids with alcohols or phenols and the transesterification of esters with alcohols. Three types of GO prepared by different methods were screened and GO by modified Hummers method was found superior to the others. The esterification of primary and secondary alcohols afforded the corresponding esters in moderate to excellent yields under mild conditions. GO-catalyzed esterification of tertiary alcohols and phenols took place hardly. Moreover, GO showed highly catalytic activity for the transesterification. As a weakly acidic solid catalyst, GO is easily available, cheap, environmentally benign, and well tolerant to various functional groups. Only catalyzed by GO, the esterification of long-chain carboxylic acids and the transesterification of the glycerol ester of long-chain carboxylic acids underwent steadily. As such, GO-catalyzed esterification and transesterification could be used in the biodiesel preparation potentially.

Cite this article

Qi Junmei , Xu Yuelong , Ma Ning , Sun Feifei . Graphite Oxide-Catalyzed Esterification and Transesterification[J]. Chinese Journal of Organic Chemistry, 2013 , 33(08) : 1839 -1846 . DOI: 10.6023/cjoc201212045

References

[1] Otera, J.; Nishikido, J. In Esterification: Methods, Reactions, and Applications, 2nd ed., Wiley-VCH, Weinheim, Japan, 2010, pp. 293~320.
[2] Borges, M. E.; Diaz, L. Renewable Sustainable Energy Rev. 2012, 16, 2839.
[3] (a) Smith, K.; El-Hiti, G. A.; Jayne, A. J.; Butters, M. Org. Biomol. Chem. 2003, 1, 1560.
(b) Melero, J. A.; Iglesias, J.; Morales, G. Green Chem. 2009, 11, 1285.
[4] Okuhara, T. Chem. Rev. 2002, 102, 3641.
[5] (a) Guo, Z.; Lue, B.; Thomasen, K.; Meye, A. S.; Xu, X. Green Chem. 2007, 9, 1362.
(b) Li, J.; Wang, J.; Zhang, L.-X.; Gu, S.-S.; Wu, F.-A.; Guo, Y.-W. Chin. J. Org. Chem. 2012, 32, 1186 (in Chinese).
(李晶, 王俊, 张磊霞, 顾双双, 吴福安, 郭跃伟, 有机化学, 2012, 32, 1186.)
[6] (a) Salinier, V.; Niccolai, G. P.; Dufaud, V.; Basset, J.-M. Adv. Synth. Catal. 2009, 351, 2168.
(b) Zeng, T.; Song, G.; Li, C.-J. Chem. Commun. 2009, 6249.
[7] (a) Toda, M.; Takagaki, A.; Okamura, M.; Kondo, J. N.; Hayashi, S.; Domen, K.; Hara, M. Nature 2005, 438, 178.
(b) Liu, F.; Sun, J.; Zhu, L.; Meng, X.; Qi, C., Xiao, F.-S. J. Mater. Chem. 2012, 22, 5495.
(c) Nevskaia, D. M.; Martín-Aranda, R. M. Catal. Lett. 2003, 87, 143.
[8] (a) Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282.
(b) Wei, Z.; Wang, D.; Kim, S.; Kim, S.-Y.; Hu, Y.; Yakes, M. K.; Laracuente, A. R.; Dai, Z.; Marder, S. R.; Berger, C.; King, W. P.; Heer, W. A.; Sheehan, P. E.; Riedo, E. Science 2010, 328, 1373.
[9] Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.
[10] Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. ACS Noano 2010, 4, 4806.
[11] Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. Chem. Soc. Rev. 2010, 39, 228.
[12] Dreyer, D. R.; Jia, H. P., Bielawski, C. W. Angew. Chem., Int. Ed. 2010, 49, 6813.
[13] Huang, H.; Huang, J.; Liu, Y. M.; He, H. Y.; Cao, Y.; Fan, K. N. Green Chem. 2012, 14, 930.
[14] (a) Kumar, A. V.; Rao, K. R. Tetrahedron Lett. 2011, 52, 5188.
(b) Verma, S.; Mungse, H. P.; Kumar, N.; Choudhary, S.; Jain, S. L.; Sain, B.; Khatri, O. P. Chem. Commun. 2011, 47, 12673.
(c) Dhakshinamoorthy, A.; Alvaro, M.; Concepción, P.; Fornés, V.; Garcia, H. Chem. Commun. 2012, 48, 5443.
[15] Zhang, X.; Xu, L.; Wang, X.-T.; Ma, N.; Sun, F.-F. Chin. J. Chem. 2012, 30, 1525.
[16] Zu, Y. H.; Tang, J. Y.; Zhu, W. C.; Zhang, M.; Liu, G.; Liu, Y.; Zhang, W. X.; Jia, M. J. Bioresour. Technol. 2011, 102, 8939.
[17] (a) Tian, J.; Gao, W. C.; Zhou, D. M.; Zhang, C. Org. Lett. 2012, 14, 3020.
(b) Li, L. C.; Ren, J.; Liao, T. G. Jiang, J. X.; Zhu, H. J. Eur. J. Org. Chem. 2007, 1026.
(c) Li, J. T.; Li, H. Y.; Li, H. Z. J. Chem. Res. 2004, 6, 416.
[18] (a) Ratnam, K. J.; Reddy, R. S.; Sekhar, N. S.; Kantam, M. L.; Figueras, F. J. Mol. Catal. A: Chem. 2007, 276, 230.
(b) Brown, H. C.; Rao, C. G.; Ravindranathanl, M. J. Org. Chem. 1978, 43, 4939.
(c) Qiu, D.; Zheng, Z. T.; Mo, F. Y.; Xiao, Q.; Tian, Y.; Zhang, Y.; Wang, J. B. Org. Lett. 2011, 13, 4988.
(d) Wang, J. Q.; He, L. N.; Miao, C. X. Green Chem. 2009, 11, 1013.
(e) Iwasaki, T.; Maegawa, Y.; Hayashi, Y.; Ohshima, T.; Mashima, K. J. Org. Chem. 2008, 73, 5147.
Outlines

/