Reviews

Palladium-Catalyzed Cross-Coupling Reaction of Organoboron Compounds with Carboxylic Derivatives

  • Yang Jun ,
  • Deng Minzhi ,
  • Yu Tao
Expand
  • Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2013-03-04

  Revised date: 2013-04-05

  Online published: 2013-04-07

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 20802088, 91017006, 90917017).

Abstract

Palladium-catalyzed cross-coupling reaction has emerged as an important strategy to the formation of C—C bond. Recently, palladium-catalyzed cross-coupling reaction between organoboron compounds and carboxylic derivatives has become a hotspot of organic chemistry. In this paper, recent researches of organoboron compounds with acyl chlorides, acid anhydrides, carboxylic acids, chloroformic derivatives, carboxylic esters and thiol esters in Suzuki cross-coupling are summarized, and the examples of these reactions in synthesis are also discussed.

Cite this article

Yang Jun , Deng Minzhi , Yu Tao . Palladium-Catalyzed Cross-Coupling Reaction of Organoboron Compounds with Carboxylic Derivatives[J]. Chinese Journal of Organic Chemistry, 2013 , 33(04) : 693 -703 . DOI: 10.6023/cjoc201303005

References

[1] Hall, D. G. Boronic Acids, Wiley, Weinheim, Germany, 2005.

[2] Dieter, R. K. Tetrahedron 1999, 55, 4177.

[3] Yamamoto, A.; Kakino, R.; Shimizu, I. Helv. Chim. Acta 2001, 84, 2996.

[4] Zapf, A. Angew. Chem., Int. Ed. 2003, 42, 5394.

[5] Xin, B.-W. J. Yulin College 2007, 17, 49 (in Chinese).
(辛炳伟, 榆林学院学报, 2007, 17, 49.)

[6] Negishi, E.; Chiu, K. W.; Yosida, T. J. Org. Chem. 1975, 40, 1676.

[7] Cho, C. S.; Itotani, K.; Uemura, S. J. Organomet. Chem. 1993, 443, 253.

[8] Bykov, V. V.; Korolev, D. N.; Bumagin, N. A. Russ. Chem. Bull. 1997, 46, 1631.

[9] (a) Bumagin, N. A.; Korolev, D. N. Tetrahedron Lett. 1999, 40, 3057.
(b) Bumagin, N. A.; Korolev, D. N. Russ. Chem. Bull., Int. Ed. 2004, 53, 364.

[10] Kabalka, G. W.; Malladi, R. R.; Tejedor, D.; Kelley, S. Tetrahedron Lett. 2000, 41, 999.

[11] Wang, J.-X.; Yang, Y.-H.; Wei, B.-G.; Hu, Y.-L.; Fu, Y. Bull. Chem. Soc. Jpn. 2002, 75, 1381.

[12] Gerard, J.; Hevesi, L. Tetrahedron 2004, 60, 367.

[13] Haddach, M.; McCarthy, J. R. Tetrahedron Lett. 1999, 40, 3109.

[14] Chen, H.; Deng, M.-Z. Org. Lett. 2000, 2, 12.

[15] Polackova, V.; Toma, S.; Augustingova, I. Tetrahedron 2006, 62, 11675.

[16] Urawa, Y.; Ogura, K. Tetrahedron Lett. 2003, 44, 271.

[17] Urawa, Y.; Nishiura, K.; Souda, S.; Ogura, K. Synthesis 2003, 2882.

[18] Bandgar, B. P.; Patil, A. V. Tetrahedron Lett. 2005, 46, 7627.

[19] Nishihara, Y.; Inoue, Y.; Fujisawa, M.; Takagi, K. Synlett 2005, 2309.

[20] Xin, B.-W.; Zhang, Y.-H.; Cheng, K. J. Org. Chem. 2006, 71, 5725.

[21] Ekoue-Kovi, K.; Xu, H.-H., Wolf, C. Tetrahedron Lett. 2008, 49, 5773.

[22] Zhang, L.; Wu, J.-L.; Shi, L.-J.; Xia, C.-G.; Li, F.-W. Tetrahedron Lett. 2011, 52, 3897.

[23] Martins, D. L.; Aguiar, L. C. S.; Antunes, O. A. C. J. Organomet. Chem. 2011, 696, 2845.

[24] Yu, A.-J., Shen, L., Cui, X.-L., Peng, D.-P., Wu, Y.-J. Tetrahedron 2012, 68, 2283.

[25] Chen, J.-X.; Peng, Y.; Liu, M.-C.; Ding, J.-C.; Su, W.-K.; Wu, H.-Y. Adv. Synth. Catal. 2012, 354, 2117.

[26] Eddarir, S.; Cotelle, N.; Bakkoura, Y.; Rolandoa, C. Tetrahedron Lett. 2003, 44, 5359.

[27] Lowe, J. A.; Drozda, S. E.; Fisher, K.; Strick, C.; Lebel, L.; Schmidt, C.; Hiller, D.; Zandi, K. S. Bioorg. Med. Chem. Lett. 2003, 13, 1291.

[28] Rahman, O.; Kihlberg, T.; Langstrom, B. Eur. J. Org. Chem. 2004, 474.

[29] Fujii, N.; Mallari, J. P.; Hansell, E. J.; Mackey, Z.; Doyle, P.; Zhou, Y.-M.; Gut, J.; Rosenthal, P. J.; McKerrowc, J. H.; Guy, R. K. Bioorg. Med. Chem. Lett. 2005, 15, 121.

[30] Mallar, J. P.; Shelat, A.; Kosinski, A.; Caffrey, C. R.; Connelly, M.; Zhu, F. Y.; McKerrowc, J. H.; Guy, R. K. Bioorg. Med. Chem. Lett. 2008, 18, 2883.

[31] Sessions, E. H.; Jacobi, P. A. Org. Lett. 2006, 8, 4125.

[32] Derbré, S.; Lecat-Guillet, N.; Pillon, F.; Ambroise, Y. Bioorg. Med. Chem. Lett. 2009, 19, 825.

[33] Chu, L.; Armstrong, H. M.; Chang, L.-L.; Cheng, A.-F.; Colwell, L.; Cui, J.; Evans, J; Galka, A.; Goulet, M. T.; Hayes, N.; Lo, J.; Menke, J.; Ok, H. O.; Ondeyka, D. L.; Patel, M.; Quaker, G. M.; Sings, H.; Witkin, S. L.; Zhao, A.; Ujjainwalla, F. Bioorg. Med. Chem. Lett. 2012, 22, 4133.

[34] Keenan, M.; Abbott, M. J.; Alexander, P. W. J. Med. Chem. 2012, 55, 4189.

[35] Yu, T.; Yang, J.; Wu, X.-Y. The 17th National Conference on Organometallic Chemistry, Beijing, China, 2012, p. 93.

[36] Gooßen, L. J.; Ghosh, K. Angew. Chem., Int. Ed. 2001, 40, 3458.

[37] Frost, C. G.; Wadsworth, K. J. Chem. Commun. 2001, 2316.

[38] Gooßen, L. J.; Paetzold, J. Adv. Synth. Catal. 2004, 346, 1665.

[39] Kakino, R.; Yasumi, S., Shimizu, I., Yamamoto, A. Bull. Chem. Soc. Jpn. 2002, 75, 137.

[40] Goossen, L. J.; Koley, D.; Hermann, H. L.; Thiel, W. J. Am. Chem. Soc. 2005, 127, 11102.

[41] Goossen, L. J.; Koley, D.; Hermann, H. L.; Thiel, W. Organometallics 2006, 25, 54.

[42] Wang, J. X.; Zhang, Y. Q. Chin. Chem. Lett. 2004, 15, 641.

[43] Lim, K.-C.; Hong, Y.-T., Kim, S. Synlett 2006, 1851.

[44] Xin, B.-W.; Zhang, Y.-H.; Cheng, K. Synthesis 2007, 1970.

[45] Xin, B.-W. Synth. Commun. 2008, 38, 2826.

[46] Shen, X.-B., Gao, T.-T., Lu, J.-M. Shao, L.-X. Appl. Organometl. Chem. 2011, 25, 497.

[47] Lin, X.-F., Li, Y., Li, S.-Y., Xiao, Z.-K., Lu, J.-M. Tetrahedron 2012, 68, 5806.

[48] Gooßen, L. J.; Ghosh, K. Eur. J. Org. Chem. 2002, 3254.

[49] Gooßen, L. J.; Winkel, L.; Döhring, A.; Ghosh, K.; Paetzold, J. Synlett 2002, 1237.

[50] (a) Kakino, R.; Narahashi, H.; Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn. 2002, 75, 1333.
(b) Kakino, R.; Narahashi, H.; Shimizu, I.; Yamamoto, A. Chem. Lett. 2001, 1242.

[51] Gooßen, L. J.; Ghosh, K. Chem. Commun. 2001, 2084.

[52] Kwon, Y.-B.; Choi, B.-R.; Lee, S.-H.; Seo, J.; Yoon, C.-M. Bull. Korean Chem. Soc. 2010, 31, 2672.

[53] (a) Dai, J.-J.; Liu, J.-H.; Luo, D.-F.; Liu, L. Chem. Commun. 2011, 47, 677.
(b) Li, M.; Wang, C.; Fang, P.; Ge, H. Chem. Commun. 2011, 47, 6587.
(c) Li, M.; Wang, C.; Ge, H. Org. Lett. 2011, 13, 2062.

[54] Duan, Y.-Z.; Deng, M.-Z. Synlett 2005, 355.

[55] Lysen, M.; Kelleher, S.; Begtrup, M.; Kristensen, J. L. J. Org. Chem. 2005, 70, 5342.

[56] Yasui, Y.; Tsuchida, S.; Miyabe, H.; Takemoto, Y. J. Org. Chem. 2007, 72, 5898.

[57] Fujinaga, M.; Suetake, K.; Gyoji, K.; Murafuji, T.; Kurotobi, K.; Sugihara, Y. Synthesis 2008, 3745.

[58] Krishnamoorthy, R.; Lam, S. Q.; Manley, C. M.; Herr, R. J. J. Org. Chem. 2010, 75, 1251.

[59] Kakino, R.; Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn. 2001, 74, 371.

[60] (a) Tatamidani, H.; Kakiuchi, F.; Chatani, N. Org. Lett. 2004, 6, 3579.
(b) Tatamidani, H.; Yokota, K.; Kakiuchi, F.; Chatani, N. J. Org. Chem. 2004, 69, 5615.

[61] Zhang, W.-Q; Yang, J.; Deng, M.-Z. 8th Domestic Annual Conference of Applied Industrial Catalysis Technology, Xi'an, China, 2011, p. 329.

[62] Savarin, C.; Srogl, J.; Liebeskind, L. S. Org. Lett. 2000, 2, 3229.

[63] Yang, H.; Li, H.; Wittenberg, R.; Egi, M.; Huang, W.; Liebeskind, L. S. J. Am. Chem. Soc. 2007, 129, 1132.

[64] Yang, H.; Liebeskind, L. S. Org. Lett. 2007, 9, 2993. Lovell, K. M.; Vasiljevik, T.; Araya, J. J.; Lozama, A.; Prevatt-Smith, K. M.; Day, V. W.; Dersch, C. M.; Rothman, R. B.; Butelman, E. R.; Kreek, M. J.; Prisinzano, T. E. Bioorg. Med. Chem. 2012, 20, 3100.
Outlines

/