Reviews

Advances in the Construction of 1-Monosubstituted 1,2,3-Triazole Ring

  • Jiang Yubo ,
  • Han Chunmei ,
  • Liang Xueqiu ,
  • Yang Peng ,
  • Wang Hong
Expand
  • a Faculty of Science, Kunming University of Science and Technology, Kunming 650500;
    b School of Mechanical and Electronic Engineering, Kunming University of Science and Technology, Kunming 650500

Received date: 2013-02-28

  Revised date: 2013-03-19

  Online published: 2013-04-12

Supported by

Project supported by the National Natural Science Foundation of China (No. 21262020) and the Science and Technology Planning Project of Yunnan Province (No. KKSY201207047)

Abstract

As the 1,2,3-triazole derivatives were used in many expanding areas, its preparation has attracted much attention and obtained encouraging progress in recent years. The construction of the ring of monosubstituted 1,2,3-triazoles is more difficult than that of the other kinds of these heterocycles, owing to the special request for the structure of "alkyne source" and the relatively rigorous reaction conditions required in the system. This review covers the recent construction advances of the heterocycles based on the different moieties, such as acetylene, substituted acetylene, vinyl compounds, and others. Some important mechanisms were also discussed in details.

Cite this article

Jiang Yubo , Han Chunmei , Liang Xueqiu , Yang Peng , Wang Hong . Advances in the Construction of 1-Monosubstituted 1,2,3-Triazole Ring[J]. Chinese Journal of Organic Chemistry, 2013 , 33(9) : 1884 -1890 . DOI: 10.6023/cjoc201302025

References

[1] Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596.

[2] Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004.

[3] Wang, J.-M.; Li, L.-J.; Zhang, G.-S. Chin. J. Org. Chem. 2009, 29, 13 (in Chinese).

(王景梅, 李凌君, 张贵生, 有机化学, 2009, 29, 13.)

[4] Kharb, R.; Yar, M. S.; Sharma, P. C. Min-Rev. Med. Chem. 2011, 11, 84.

[5] Hanselmann, R.; Job, G. E.; Johnson, G.; Lou, R. L.; Martynow, J. G.; Reeve, M. M. Org. Process Res. Dev. 2010, 14, 152.

[6] Zhang, W.-S.; Kuang, C.-X.; Yang, Q. Chin. J. Org. Chem. 2011, 31, 54 (in Chinese).

(张文生, 匡春香, 杨青, 有机化学, 2011, 31, 54.)

[7] Hradilova, L.; Polakova, M.; Dvorakova, B.; Marian, H.; Petrus, L. Carbohyd. Res. 2012, 361, 1.

[8] Suzuki, T.; Ota, Y.; Ri, M.; Bando, M.; Gotoh, A.; Itoh, Y.; Tsumoto, H.; Tatum, P R.; Mizukami, T.; Nakagawa, H. J. Med. Chem. 2012, 55, 9562.

[9] Pericherla, K.; Khedar, P.; Khungar, B.; Kumar, A. Tetrahedron Lett. 2012, 53, 6761.

[10] Naik, R. J.; Kulkarni, M. V.; Pai, K. S. R.; Nayak, P. G. Chem. Biol. Drug Des. 2012, 80, 516.

[11] Sun, L.; Ma, X.-F.; Dong, C.-M.; Zhu, B.-S.; Zhu, X.-Y. Biomacromolecules 2012, 13, 3581.

[12] Golas, P. L.; Matyjaszewski, K. Chem. Soc. Rev. 2010, 39, 1338.

[13] Hua, Y.-R.; Flood, A. H. Chem. Soc. Rev. 2010, 39, 1262.

[14] Rawal, G. K.; Zhang, P.; Ling, C.-C. Org. Lett. 2010, 12, 3096.

[15] Dong, C.-M.; Liu, G. Polym. Chem. 2013, 4, 46.

[16] Jin, J.; Zhang, M.-M.; Xiong, Q.-Q.; Sun, P.-C.; Zhao, H.-Y. Soft Matter 2012, 8, 11809.

[17] Zhao, B.-T.; Liu, L.-W.; Li, X.-C.; Qu, G.-R.; Belhadj, E.; Le Derf, F.; Salle, M. Tetrahedron Lett. 2013, 54, 23.

[18] Saha, S.; Bruening, M. L.; Baker, G. L. Macromolecules 2012, 45, 9063.

[19] Namba, K.; Mera, A.; Osawa, A.; Sakuda, E.; Kitamura, N.; Tanino, K. Org. Lett. 2012, 14, 5554.

[20] Li, Q.-M.; Kang, H.-L.; Liu, R.-G. Chin. J. Chem. 2012, 30, 2169.

[21] Nahrwold, M.; Bogner, T.; Eissler, S.; Verma, S.; Sewald, N. Org. Lett. 2010, 12, 1064.

[22] Mamidyala, S. K.; Finn, M. G. Chem. Soc. Rev. 2010, 39, 1252.

[23] Goyard, D.; Baron, M.; Skourti, P. V.; Chajistamatiou, A. S.; Docsa, T.; Gergely, P.; Chrysina, E. D.; Praly, J.; Vidal, S. Carbohyd. Res. 2012, 364, 28.

[24] Palomo, J. M. Org. Biomol. Chem. 2012, 10, 9309.

[25] Beghdadi, S.; Abdelhedi Miladi, I.; Ben Romdhane, H.; Bernard, J.; Drockenmuller, E. Biomacromolecules 2012, 13, 4138.

[26] Jiang, Y.-B.; Kuang, C.-X. Prog. Chem. 2012, 24, 1983 (in Chinese).

(江玉波, 匡春香, 化学进展, 2012, 24, 1983.)

[27] Zheng, H.; McDonald, R.; Hall, D. Chem. Eur. J. 2010, 16, 5454.

[28] Jeong, Y. K.; Kim, D. Y.; Choi, Y. S.; Ryu, J. S. Org. Biomol. Chem. 2011, 9, 374.

[29] Jeong, Y.; Ryu, J. J. Org. Chem. 2010, 75, 4183.

[30] Fukuzawa, S.; Shimizu, E.; Ogata, K. Heterocycles 2009, 78, 645.

[31] Kauer, J. C.; Carboni, R. A. J. Am. Chem. Soc. 1967, 89, 2633.

[32] Spagnolo, P.; Zanirato, P. J. Org. Chem. 1978, 43, 3539.

[33] Wu, L.-Y.; Xie, Y.-X.; Chen, Z.-S.; Niu, Y.-N.; Liang, Y.-M. Synlett 2009, 1453.

[34] Vereshchagin, L. I.; Tikhonova, L. G.; Maksi-kova, A. V.; Gavrilov, L. D.; Gareev, G. A. Zh. Org. Khim. 1979, 15, 612.

[35] Naud, J.; Lemke, C.; Goudreau, N.; Beaulieu, E.; White, P. D.; Llinas-Brunet, M.; Forgione, P. Bioorg. Med. Chem. Lett. 2008, 18, 3400.

[36] Xu, M.; Kuang, C.-X.; Wang, Z.; Yang, Q.; Jiang, Y.-B. Synthesis 2011, 223.

[37] Kolarovic, A.; Schnurch, M.; Mihovilovic, M. D. J. Org. Chem. 2011, 76, 2613.

[38] Yang, Q.; Jiang, Y.-B.; Kuang, C.-X. Helv. Chim. Acta 2012, 95, 448.

[39] Chan, D. C. M.; Laughton, C. A.; Queener, S. F.; Stevens, M. F. G. Bioorg. Med. Chem. 2002, 10, 3001.

[40] Fletcher, J. T.; Walz, S. E.; Keeney, M. E. Tetrahedron Lett. 2008, 49, 7030.

[41] Jiang, Y.-B.; Kuang, C.-X.; Yang Q. Synlett 2009, 3163.

[42] Gonda, Z.; Lorincz, K.; Novak, Z. Tetrahedron Lett. 2010, 51, 6275.

[43] Jiang, Y.-B.; Kuang, C.-X.; Yang, Q. Tetrahedron 2011, 67, 289.

[44] Sasaki, T.; Eguchi, S.; Yamaguchi, M.; Esaki, T. J. Org. Chem. 1981, 46, 1800.

[45] Di Nunno, L.; Scilimati, A. Tetrhedron 1986, 42, 3913.

[46] Schwan, A. L.; Warkentin, J. Can. J. Chem. 1988, 66, 2285.

[47] Kadaba, P. K. J. Org. Chem. 1992, 57, 3075.

[48] Hansen, S. G.; Jensen, H. H. Synlett 2009, 3275.

[49] Bertho, A. Eur. J. Inorg. Chem. 1925, 58, 859.

[50] Polanc, S.; Stanovnik, B.; Tisler, M. J. Org. Chem. 1976, 41, 3152.

[51] Harada, K.; Oda, M.; Matsushita, A.; Shirai, M. Heterocycles 1998, 48, 695.

[52] Kaplan, G.; Drake, G.; Tollison, K. J. Heterocycl. Chem. 2005, 42, 19.

Outlines

/