Articles

Investigation on Coupling Reaction Mechanism from N-(2-Bromophenyl)-2,2,2-trifluoroacetamide and Terminal Alkyne to Indol Catalyzed by CuI

  • Zhang Ming ,
  • Wang Lingling ,
  • Li Laicai ,
  • Tian Anmin
Expand
  • a College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610066;
    b Department of Chemistry, Sichuan University, Chengdu 610064

Received date: 2013-03-08

  Revised date: 2013-05-03

  Online published: 2013-06-21

Supported by

Project supported by the Department of Education of Sichuan Province (No. 13ZA0150).

Abstract

The reaction mechanism of N-(2-bromophenyl)-2,2,2-trifluoroacetamide and terminal alkyne catalyzed by CuI has been investigated by using density functional theory. The geometries of the reactants, transition states, intermediates and products have been optimized completely at B3LY P/6-31+G* level with the validation of the vibration analysis and the energy calculation. Atoms in molecules (AIM) theories and nature bond orbital (NBO) have been applied to discuss the orbits interaction and the bond natures. Catalytic mechanism is also interpreted by frontier orbital theory. Two possible reaction paths IA and IB were obtained. The results indicated that IA is the really main possible path of the reaction. Meanwhile, the single point energy of the reaction process in gas and solvent at 6-311+G* level has been individually investigated with higher precision. The results indicate that the reaction mechanism and the change trend of correspondence energy at two different levels are consistent. The final result of the our theory study agrees with the experimental data, and it illustrate that CuI is an effective catalyst in this reaction.

Cite this article

Zhang Ming , Wang Lingling , Li Laicai , Tian Anmin . Investigation on Coupling Reaction Mechanism from N-(2-Bromophenyl)-2,2,2-trifluoroacetamide and Terminal Alkyne to Indol Catalyzed by CuI[J]. Chinese Journal of Organic Chemistry, 2013 , 33(10) : 2169 -2177 . DOI: 10.6023/cjoc201303011

References

[1] Sundberg, R. J.; Hegedus, L. S. Angew. Chem., Int. Ed. Engl. 1988, 27, 1113.
[2] Gut, I. G.; Wirz, J. Angew Chem., Int. Ed. Engl. 1994, 33, 1153.
[3] Taylor, E. C.; Saxton, J. E. The Chemistry of Heterocyclic Compounds, Wiley Interscience, 1983 and supplement, 1994.
[4] Miyata, O.; Kimura, Y.; Muroya, K.; Hiramatsu, H.; Naito, T. Tetrahedron Lett. 1999, 40, 3601.
[5] Hughes, D. L. Org. Prep. Proc. Int. 1993, 25, 607.
[6] Dalpozzo; Renato; Bartoli; Giuseppe Curr. Org. Chem. 2005, 5, 163.
[7] Shriner, R. L.; Ashley, W. C.; Welch, E. Org. Synth. Coll. 1955, 3, 725.
[8] Rogers, C. V.; Corson, B. B. Org. Synth. Coll. 1963, 5, 884.
[9] Takumi, F.; Junya, Y.; Yuki, K.; Ayano, H. J. Org. Chem. 2010, 75, 7010.
[10] Hassan, H.; Martine, S.; Frédéric, B.; Cyril, A. J. Org. Chem. 2012, 77(1), 417.
[11] Shahzad, S. A.; Vivant, C.; Wirth, T. Org. Lett. 2010, 12, 1364.
[12] Schmidt, A. M.; Eilbracht, P. J. Org. Chem. 2005, 70, 5528.
[13] Edulji, S. K.; Nguyen, S. T. Organometallics 2003, 22, 3374.
[14] Hirotaka, S.; Yusuke, A.; Yoshinori, A.; Yoshiya, F.; Naoto, C. J. Am. Chem. Soc. 2011, 133, 14952.
[15] Jian, C.; Xian, H. Org. Lett. 2010, 12, 5048.
[16] Jitender, B.; Bariwal, D. S.; Toma, N. Org. Lett. 2010, 12, 2774.
[17] Bates, C. G.; Saejueng, P.; Murphy, M. J.; Venkataraman, D. Org. Lett. 2002, 4, 4727.
[18] Cacchi, S. Org. Lett. 2003, 5, 3843.
[19] Liu, F.; Ma, D, W. J. Org. Chem. 2007, 72, 4844.
[20] Zheng, W. R.; Fu, Y.; Wang, H. J.; Guo, Q. X. Chin. J. Org. Chem. 2008, 28, 459 (in Chinese).(郑文锐, 傅尧, 王华静, 郭庆祥, 有机化学, 2008, 28, 459.)
[21] Jiang, L. H.; Li, Z. Z.; Chen, C. Y.; Yin, K.; Chen, J. W.; Wang, X. Y.; Huang, Y.; Xiang, J. N. Chin. J. Org. Chem. 2007, 27, 1096 (in Chinese). (蒋历辉, 李治章, 陈超越, 尹凯, 陈金文, 王小勇, 黄勇, 向建南, 有机化学, 2007, 27, 1096.)
[22] Nie, H.; Li, Q.; Zhao, K. Q. Chin. J. Org. Chem. 2012, 32, 121 (in Chinese).(聂汉, 李权, 赵可清, 有机化学, 2012, 32, 121.)
[23] Liang, X. Q.; Pu, X. M.; Tian, A. M. Chin. J. Org. Chem. 2011, 31, 328 (in Chinese).(梁晓琴, 蒲雪梅, 田安民, 有机化学, 2011, 31, 328.)
[24] Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.
[25] Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213.
[26] Reed, A. E.; Weinhold, F.; Curtiss, L. A. J. Chem. Phys. 1986, 84, 5687.
[27] Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102,1995.
[28] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A02, Gaussian, Inc., Wallingford C. T, 2009.
Outlines

/