Chinese Journal of Organic Chemistry >
Gold(I)-Catalyzed Intermolecular Oxidation of Terminal Alkynes:Synthesis of α-Acetoxy Ketones
Received date: 2013-08-11
Revised date: 2013-11-04
Online published: 2013-11-14
Supported by
Project supported by the Natural Science Foundation of Hunan Province (No. 11JJ2009) and the Sci-Tech Innovation Teams in Universities of Hunan Province.
In the presence of Ph3PAuNTf2, 8-methylquinoline-N-oxide and MsOH, various of terminal alkynes were efficiently converted into the corresponding α-acetoxy ketones. The influences of oxidant, catalyst structure, catalyst loading and reaction media on the reaction were investigated, and the optimal reaction conditions were also obtained. The reaction is proposed to proceed via α-oxo gold carbene intermolecular reaction with acetic acids. The reaction method with its advantages of simple procedure, mild reaction conditions and high yield provides a novel valuable approach to α-acetoxy ketones from terminal alkynes.
Wang Xiaoyong , Li Zhizhang . Gold(I)-Catalyzed Intermolecular Oxidation of Terminal Alkynes:Synthesis of α-Acetoxy Ketones[J]. Chinese Journal of Organic Chemistry, 2014 , 34(3) : 566 -571 . DOI: 10.6023/cjoc201308013
[1] Fürstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410.
[2] Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180.
[3] Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351.
[4] Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239.
[5] Huang, H.; Zhou, Y.; Liu, H. Beilstein J. Org. Chem. 2011, 7, 897.
[6] Lu, B.-L.; Dai, L.; Shi, M. Chem. Soc. Rev. 2012, 41, 3318.
[7] Ye, L.; He, W.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 8550.
[8] Ye, L.; He, W.; Zhang, L. Angew. Chem., Int. Ed. 2011, 50, 3236.
[9] Qian, D.; Zhang, J. Chem. Commun. 2011, 47, 11152.
[10] He, W.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 133, 8482.
[11] Qian, D.; Zhang, J. Chem. Commun. 2012, 48, 7082.
[12] He, W.; Xie, L.; Xu, Y.; Xiang, J.; Zhang, L. Org. Biomol. Chem. 2012, 10, 3168.
[13] Xu, M.; Ren, T.-T.; Li, C.-Y. Org. Lett. 2012, 14, 4902.
[14] Fu, J.; Shang, H.; Wang, Z.; Chang, L.; Shao, W.; Yang, Z.; Tang, Y. Angew. Chem., Int. Ed. 2013, 52, 4198.
[15] Xie, L.; Liang, Z.; Yan, D.; He, W.; Xiang, J. Synlett 2013, 1809.
[16] Li, G.; Zhang, L. Angew. Chem., Int. Ed. 2007, 46, 5156.
[17] Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 4160.
[18] Li, C.-W.; Pati, K.; Lin, G.-Y.; Sohel, S. M. A.; Hung, H.-H.; Liu, R.-S. Angew. Chem., Int. Ed. 2010, 49, 9891.
[19] Yeom, H.-S.; Lee, J.-E.; Shin, S. Angew. Chem., Int. Ed. 2008, 47, 7040.
[20] Mukherjee, A.; Dateer, R. B.; Chaudhuri, R.; Bhunia, S.; Karad, S. N.; Liu, R.-S. J. Am. Chem. Soc. 2011, 133, 15372.
[21] Xiao, J.; Li, X. Angew. Chem., Int. Ed. 2011, 50, 7226.
[22] Green, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, Wiley, New York, 1991.
[23] Holshouser, M. H.; Kolb, M. J. Pharm. Sci. 1986, 75, 619.
[24] Rather, J. B.; Reid, E. E. J. Am. Chem. Soc. 1919, 41, 75.
[25] Paulissen, R.; Reimlinger, H.; Hayez, E.; Hubert, A. J.; Teyssié, P. Tetrahedron Lett. 1973, 14, 2233.
[26] Shinada, T.; Kawakami, T.; Sakai, H.; Takada, I.; Ohfune, Y. Tetrahedron Lett. 1998, 39, 3757.
[27] Rubottom, G. M.; Grube, J. M.; Kincaid, K. Synth. Commun. 1976, 6, 59.
[28] Demir, A. S.; Camkerten, N.; Akgun, H.; Tanyeli, C.; Mahasneh, A. S.; Watt, D. S. Synth. Commun. 1990, 20, 2279.
[29] Lee, J. C.; Jin, Y. S.; Choi, J.-H. Chem. Commun. 2001, 956.
[30] Mo, D.-L.; Dai, L.-X.; Hou, X.-L. Tetrahedron Lett. 2009, 50, 5578.
[31] Sheng, J.; Li, X.; Tang, M.; Gao, B.; Huang, G. Synthesis 2007, 1165.
[32] Ochiai, M.; Takeuchi, Y.; Katayama, T.; Sueda, T.; Miyamoto, K. K. J. Am. Chem. Soc. 2005, 127, 12244.
[33] Deng, G.; Luo, J. Tetrahedron 2013, 69, 5937.
[34] Kaila, N.; Janz, K.; De Bernardo, S.; Bedard, P. W.; Camphausen, R. T.; Tam, S.; Tsao, D. H. H.; Keith, J. C.; Nickerson-Nutter, C.; Shilling, A.; Young-Sciame, R.; Wang, Q. J. Med. Chem. 2006, 50, 21.
/
〈 |
|
〉 |