Synthesis of Novel Trichloride Indenyl Zirconium Complexes with Pendant Pyridine Moiety

  • Zhang Yanlu ,
  • Ma Haiyan ,
  • Huang Jiling
Expand
  • Laboratory of Organometallics Chemistry, East China University of Science and Technology, Shanghai 200237

Received date: 2013-10-21

  Revised date: 2013-12-05

  Online published: 2013-12-19

Supported by

Project supported by the National Natural Science Foundation of China (No. 20372022).

Abstract

It is always difficult to synthesize half-sandwich trichloride cyclopentadienyl (indenyl) zirconium complexes due to accompanying the formation of sandwich metallocene (indenyl) zirconium complexes. In this paper, a series of novel trichloride indenyl zirconium complexes, [Ind-Bridge-Py]ZrCl3·THFx (CN1CN3), bearing pendant pyridine moiety with chelating ring structure, were synthesized selectively by directly reacting lithium salts of substituted indenyl with ZrCl4·2THF, and no di-indenyl zirconium complexes were formed. Compared with conventional methods of synthesizing half-sandwich indenyl complexes, the synthetic method of these kinds of trichloride indenyl zirconium complexes with pendant pyridine moiety has the advantages of easy operation, single product, easy separation and high yield. The X-ray of CN2 [Bridge: C(Me, Et)CH2] shows that zirconium is coordinated with N atom and also with one O atom from THF. Another molecule of THF in the crystal is free and not coordinated with zirconium.

Cite this article

Zhang Yanlu , Ma Haiyan , Huang Jiling . Synthesis of Novel Trichloride Indenyl Zirconium Complexes with Pendant Pyridine Moiety[J]. Chinese Journal of Organic Chemistry, 2014 , 34(1) : 197 -203 . DOI: 10.6023/cjoc201310032

References

[1] Schellenberg, J. Prog. Polym. Sci. 2009, 34, 688.

[2] Zhang, Y. L.; Ma, H. Y.; Huang, J. L. J. Mol. Catal. A: Chem. 2013, 373, 85.

[3] McGuinness, D. S. Chem. Rev. 2011, 111, 2321.

[4] Deckers, P. J. W.; Hessen, B.; Teuben, J. H. Angew. Chem., Int. Ed. 2001, 40, 2516.

[5] Huang, J. L.; Wu, T. Z.; Qian, Y. L. Chem. Commun. 2003, 2816.

[6] Suttil, J. A.; McGuinness, D. S.; Evans, S. J. Dalton. Trans. 2010, 39, 5278.

[7] Lund, E. C.; Livinghouse, T. Organometallics 1990, 9, 2426.

[8] Sieb, D.; Schuhen, K.; Morgen, M.; Herrmann, H.; Wadepohl, H.; Lucas, N. T.; Baker, R. W.; Enders, M. Organometallics 2012, 31, 356.

[9] Dreier, T.; Fröhlich, R.; Erker, G. J. Organomet. Chem. 2001, 621, 197.

[10] Shaw, S. L.; Morris, R. J.; Huffman, J. C. J. Organomet. Chem. 1995, 489, C4.

[11] Allan, L. E. N.; Clarkson, G. J.; Fox, D. J.; Gott, A. L.; Scott, P. J. Am. Chem. Soc. 2010, 132, 15308.

[12] Saβmannshausen, J.; Powell, A. K.; Anson, C. E.; Wocadlo, S.; Bochmann, M. J. Organomet. Chem. 1999, 592, 84.

[13] Manna, K.; Everett, W. C.; Schoendorff, G.; Ellern, A.; Windus, T. L.; Sadow, A. D. J. Am. Chem. Soc. 2013, 135, 7235.

[14] Tagge, C. D.; Kravchenko, R. L.; Lal, T. K.; Waymouth, R. M. Organometallics 1999, 18, 380.

[15] Krut'ko, D. P. Russ. Chem. Bull., Int. Ed. 2009, 58, 1745.

[16] Krut'ko, D. P.; Belov, S. A., Kirsanov, R. S.; Lemenovskii, D. A., Churakov, A. V. Russ. Chem. Bull., Int. Ed. 2010, 59, 329.

[17] Ma, H. Y.; Huang, J. L.; Qian, Y. L. Inorg. Chem. Commun. 2001, 4, 515.

[18] Zhang, H.; Ma, J. Qian, Y. L.; Huang, J. L. Organometallics 2004, 23, 5681.

[19] Liu, K. F.; Wu, Q. L.; Luo, X. Y.; Gao, W.; Mu, Y. Dalton Trans. 2012, 41, 3461.

[20] Lei, Y. L.; Wang, Y. B.; Luo, Y. J. J. Organometal. Chem. 2013, 738, 24.

[21] Wang, Y. B.; Lei, Y. L.; Chi, S. H.; Luo, Y. J. Dalton Trans. 2013, 42, 1862.

[22] Guan, S. Z.; Nie, W. L.; Borzov, M. V. Acta Crystallogr. 2011, 67, 540.

[23] Krut'ko, D. P.; Kirsanov, R. S.; Belov, S. A.; Borzov, M. V.; Churakov, A. V. J. Organomet. Chem. 2007, 692, 1465.

[24] Ziniuk, Z.; Goldberg, I.; Kol, M. J. Organomet. Chem. 1997, 545546, 441.

[25] Enders, M.; Rudolph, R.; Pritzkow, H. Chem. Ber. 1996, 129, 459.

Outlines

/