Chinese Journal of Organic Chemistry >
Non-fullerene Organic Small Molecule Electron-Acceptors
Received date: 2013-11-26
Revised date: 2014-01-07
Online published: 2014-01-22
Supported by
Project supported by the National Natural Science Foundation of China (No. 51003080), the Youth Science Plan for Light of the Morning Sun of Wuhan City (No. 201271031385), and the Natural Science Foundation of Hubei Province (No. 2012FFB04705).
To achieve high efficiency organic solar cells (OSCs), the development of donor and acceptor materials for the bulk-heterojunction (BHJ) blend is the most important part and has attracted great interest. So far, the study of donor materials is still dominant and devices with efficiency exceeded 8% are reported by many research groups. On the contrary, the developments of new acceptor materials are relatively limited, and most of them are focused on the derivatives of fullerene. Recently, organic small molecule acceptors (OSMAs), which are potential alternative to fullerene derivatives, have drawn significant interest. Compared to fullerene derivatives, OSMAs are much easier to be synthesized and purified, and the bandgap could be finely adjusted by proper molecule design. Recent reports on OSMAs show great improvement and the efficiency has reached 4%. In this review, several kinds of OSMAs, covering new molecule design and application in device fabrication are comprehensively introduced. Finally, critical challenges that determine photovoltaic performance and prospects for future directions are discussed.
Key words: solar cells; bulk-heterojunction; small-molecules; non-fullerene; acceptors
Liu Yanjiao , Liu Jing , Zhang Linhua , Fang Junfeng , Zhang Wenjun , Liu Zhitian . Non-fullerene Organic Small Molecule Electron-Acceptors[J]. Chinese Journal of Organic Chemistry, 2014 , 34(5) : 1021 -1033 . DOI: 10.6023/cjoc201311041
[1] Wienk, M. M.; Turbiez, M.; Gilot, J.; Janssen, R. A. J. Adv. Mater. 2008, 20, 2556.
[2] Liang, Y.; Feng, D.; Wu, Y.; Tsai, S.-T.; Li, G.; Ray, C.; Yu, L. J. Am. Chem. Soc. 2009, 131, 7792.
[3] Brabec, C. J.; Gowrisanker, S.; Halls, J. J. M.; Laird, D.; Jia, S.; Williams, S. P. Adv. Mater. 2010, 22, 3839.
[4] Lee, J.; Han, A. R.; Kim, J.; Kim, Y.; Oh, J. H.; Yang, C. J. Am. Chem. Soc. 2012, 134, 20713.
[5] Tang, W.; Hai, J.; Dai, Y.; Huang, Z.; Lu, B.; Yuan, F.; Tang, J.; Zhang, F. Sol. Energy Mater. Sol. Cells 2010, 94, 1963.
[6] Mishra, A.; Bäuerle, P. Angew. Chem., Int. Ed. 2012, 51, 2020.
[7] Li, W.; Furlan, A.; Hendriks, K. H.; Wienk, M. M.; Janssen, R. A. J. Am. Chem. Soc. 2013, 135, 5529.
[8] Zhou, J.; Zuo, Y.; Wan, X.; Long, G.; Zhang, Q.; Ni, W.; Liu, Y.; Li, Z.; He, G.; Li, C. J. Am. Chem. Soc. 2013, 135, 8484.
[9] You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C.-C.; Gao, J.; Li, G. Nat. Commun. 2013, 4, 1446.
[10] Tang, C. W. Appl. Phys. Lett. 1986, 48, 183.
[11] Chen, J.; Cao, Y. Acc. Chem. Res. 2009, 42, 1709.
[12] Boudreault, P.-L. T.; Najari, A.; Leclerc, M. Chem. Mater. 2010, 23, 456.
[13] Wienk, M. M.; Kroon, J. M.; Verhees, W. J. H.; Knol, J.; Hummelen, J. C.; van Hal, P. A.; Janssen, R. A. J. Angew. Chem., Int. Ed. 2003, 42, 3371.
[14] Thompson, B. C.; Fréchet, J. M. J. Angew. Chem., Int. Ed. 2008, 47, 58.
[15] Liu, T.; Troisi, A. Adv. Mater. 2012, 25, 1038.
[16] He, Y.; Li, Y. Phys. Chem. Chem. Phys. 2011, 13, 1970.
[17] Lenes, M.; Shelton, S. W.; Sieval, A. B.; Kronholm, D. F.; Hummelen, J. C. K.; Blom, P. W. Adv. Funct. Mater. 2009, 19, 3002.
[18] Scharber, M. C.; M黨lbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Adv. Mater. 2006, 18, 789.
[19] Erten, S.; Meghdadi, F.; Gunes, S.; Koeppe, R.; Sariciftci, N.; Icli, S. Eur. Phys. J. Appl. Phys. 2006, 36, 225.
[20] Rim, S.-B.; Fink, R. F.; Schoneboom, J. C.; Erk, P.; Peumans, P. Appl. Phys. Lett. 2007, 91, 173504.
[21] Dittmer, J.; Lazzaroni, R.; Lecl鑢e, P.; Moretti, P.; Granström, M.; Petritsch, K.; Marseglia, E.; Friend, R.; Bredas, J.; Rost, H. Sol. Energy Mater. Sol. Cells 2000, 61, 53.
[22] Li, J.; Dierschke, F.; Wu, J.; Grimsdale, A. C.; Mullen, K. J. Mater. Chem. 2006, 16, 96.
[23] Wu, D.; Zhi, L.; Bodwell, G. J.; Cui, G.; Tsao, N.; M黮len, K. Angew. Chem., Int. Ed. 2007, 46, 5417.
[24] Schmidt-Mende, L.; Fechtenkötter, A.; M黮len, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D. Science 2001, 293, 1119.
[25] De Luca, G.; Liscio, A.; Melucci, M.; Schnitzler, T.; Pisula, W.; Clark, C. G.; Scolaro, L. M.; Palermo, V.; M黮len, K.; Samor?, P. J. Mater. Chem. 2010, 20, 71.
[26] Susarova, D. K.; Troshin, P. A.; Höglinger, D.; Koeppe, R.; Babenko, S. D.; Lyubovskaya, R. N.; Razumov, V. F.; Serdar Sariciftci, N. Sol. Energy Mater. Sol. Cells 2010, 94, 803.
[27] Shin, W. S.; Jeong, H.-H.; Kim, M.-K.; Jin, S.-H.; Kim, M.-R.; Lee, J.-K.; Lee, J. W.; Gal, Y.-S. J. Mater. Chem. 2006, 16, 384.
[28] Lu, Y.; Chen, H.; Qiao, F.; Hu, X.; Ng, S.-C. Sol. Energy Mater. Sol. Cells 2010, 94, 2036.
[29] Sharma, G. D.; Balraju, P.; Mikroyannidis, J. A.; Stylianakis, M. M. Sol. Energy Mater. Sol. Cells 2009, 93, 2025.
[30] Sharma, G. D.; Suresh, P.; Mikroyannidis, J. A.; Stylianakis, M. M. J. Mater. Chem. 2010, 20, 561.
[31] Mikroyannidis, J. A.; Suresh, P.; Sharma, G. D. Synth. Met. 2010, 160, 932.
[32] Shi, M.-M.; Chen, H.-Z.; Sun, J.-Z.; Ye, J.; Wang, M. Chem. Commun. 2003, 1710.
[33] Bu, L.; Guo, X.; Yu, B.; Qu, Y.; Xie, Z.; Yan, D.; Geng, Y.; Wang, F. J. Am. Chem. Soc. 2009, 131, 13242.
[34] Zhang, X.; Lu, Z.; Ye, L.; Zhan, C.; Hou, J.; Zhang, S.; Jiang, B.; Zhao, Y.; Huang, J.; Zhang, S. Adv. Mater. 2013, 25, 5791.
[35] Kamm, V.; Battagliarin, G.; Howard, I. A.; Pisula, W.; Mavrinskiy, A.; Li, C.; M黮len, K.; Laquai, F. Adv. Energy Mater. 2011, 1, 297.
[36] Sharma, G. D.; Roy, M. S.; Mikroyannidis, J. A.; Justin Thomas, K. R. Org. Electron. 2012, 13, 3118.
[37] Erten, S.; Icli, S. Inorg. Chim. Acta 2008, 361, 595.
[38] Ren, G.; Ahmed, E.; Jenekhe, S. A. Adv. Energy Mater. 2011, 1, 946.
[39] Shin, R. Y. C.; Kietzke, T.; Sudhakar, S.; Dodabalapur, A.; Chen, Z.-K.; Sellinger, A. Chem. Mater. 2007, 19, 1892.
[40] Shin, R. Y. C.; Sonar, P.; Siew, P. S.; Chen, Z.-K.; Sellinger, A. J. Org. Chem. 2009, 74, 3293.
[41] Kietzke, T.; Shin, R. Y. C.; Egbe, D. A. M.; Chen, Z.-K.; Sellinger, A. Macromolecules 2007, 40, 4424.
[42] Woo, C. H.; Holcombe, T. W.; Unruh, D. A.; Sellinger, A.; Fréchet, J. M. J. Chem. Mater. 2010, 22, 1673.
[43] Ooi, Z. E.; Tam, T. L.; Shin, R. Y. C.; Chen, Z. K.; Kietzke, T.; Sellinger, A.; Baumgarten, M.; Mullen, K.; deMello, J. C. J. Mater. Chem. 2008, 18, 4619.
[44] Anthony, J. E. Chem. Mater. 2010, 23, 583.
[45] Inal, S.; Schubert, M.; Sellinger, A.; Neher, D. J. Phys. Chem. Lett.2010, 1, 982.
[46] Zeng, W.; Chong, K. S. L.; Low, H. Y.; Williams, E. L.; Tam, T. L.; Sellinger, A. Thin Solid Films 2009, 517, 6833.
[47] Ooi, Z.; Tam, T.; Sellinger, A.; deMello, J. C. Energy Environ. Sci. 2008, 1, 300.
[48] Walker, B.; Han, X.; Kim, C.; Sellinger, A.; Nguyen, T.-Q. ACS Appl. Mater. Int. 2012, 4, 244.
[49] Lim, Y.-F.; Shu, Y.; Parkin, S. R.; Anthony, J. E.; Malliaras, G. G. J. Mater. Chem. 2009, 19, 3049.
[50] Shu, Y.; Lim, Y.-F.; Li, Z.; Purushothaman, B.; Hallani, R.; Kim, J. E.; Parkin, S. R.; Malliaras, G. G.; Anthony, J. E. Chem. Sci. 2011, 2, 363.
[51] Li, Z.; Lim, Y.-F.; Kim, J. B.; Parkin, S. R.; Loo, Y.-L.; Malliaras, G. G.; Anthony, J. E. Chem. Commun. 2011, 47, 7617.
[52] Sakai, J.; Taima, T.; Saito, K. Org. Electron. 2008, 9, 582.
[53] Sakai, J.; Taima, T.; Yamanari, T.; Saito, K. Sol. Energy Mater. Sol. Cells 2009, 93, 1149.
[54] Barbarella, G.; Favaretto, L.; Sotgiu, G.; Zambianchi, M.; Antolini, L.; Pudova, O.; Bongini, A. J. Org. Chem. 1998, 63, 5497.
[55] Camaioni, N.; Ridolfi, G.; Fattori, V.; Favaretto, L.; Barbarella, G. Appl. Phys. Lett. 2004, 84, 1901.
[56] Camaioni, N.; Ridolfi, G.; Fattori, V.; Favaretto, L.; Barbarella, G. J. Mater. Chem. 2005, 15, 2220.
[57] Barbarella, G.; Favaretto, L.; Zanelli, A.; Gigli, G.; Mazzeo, M.; Anni, M.; Bongini, A. Adv. Funct. Mater. 2005, 15, 664.
[58] Ridolfi, G.; Camaioni, N.; Samori, P.; Gazzano, M.; Accorsi, G.; Armaroli, N.; Favaretto, L.; Barbarella, G. J. Mater. Chem. 2005, 15, 895.
[59] Biedermann, P. U.; Stezowski, J.; Agranat, I. Eur. J. Org. Chem. 2001, 2001, 15.
[60] Cohen, Y.; Klein, J.; Rabinovitz, M. J. Chem. Soc., Chem. Commun. 1986, 14, 1071.
[61] Hirsch, A.; Brettreich, M. Fullerenes, Wiley-VCH, 2006.
[62] Wudl, F. Acc. Chem. Res. 1992, 25, 157.
[63] Brunetti, F. G.; Gong, X.; Tong, M.; Heeger, A. J.; Wudl, F. Angew. Chem., Int. Ed. 2010, 49, 532.
[64] Gong, X.; Tong, M.; Brunetti, F. G.; Seo, J.; Sun, Y.; Moses, D.; Wudl, F.; Heeger, A. J. Adv. Mater. 2011, 23, 2272.
[65] Tieke, B.; Rabindranath, A. R.; Zhang, K.; Zhu, Y. Beil. J. Org. Chem. 2010, 6, 830.
[66] Walker, B.; Tamayo, A. B.; Dang, X.-D.; Zalar, P.; Seo, J. H.; Garcia, A.; Tantiwiwat, M.; Nguyen, T.-Q. Adv. Funct. Mater. 2009, 19, 3063.
[67] Sonar, P.; Ng, G.-M.; Lin, T. T.; Dodabalapur, A.; Chen, Z.-K. J. Mater. Chem. 2010, 20, 3626.
[68] Karsten, B. P.; Bijleveld, J. C.; Janssen, R. A. J. Macromol. Rapid Commun. 2010, 31, 1554.
[69] Lin, Y.; Cheng, P.; Li, Y.; Zhan, X. Chem. Commun. 2012, 48, 4773.
[70] Lin, Y.; Li, Y.; Zhan, X. Adv. Energy Mater. 2013, 3, 1166.
[71] Mart韓ez-D韆z, M. V.; de la Torre, G.; Torres, T. Chem. Commun. 2010, 46, 7090.
[72] Bottari, G.; de la Torre, G.; Guldi, D. M.; Torres, T. S. Chem. Rev. 2010, 110, 6768.
[73] Chen, L. L.; Li, W. L.; Wei, H. Z.; Chu, B.; Li, B. Sol. Energy Mater. Sol. Cells 2006, 90, 1788.
[74] Singh, S. P.; Sellinger, A.; Dodabalapur, A. J. Appl. Phys. 2010, 107, 044509.
[75] Jiang, X.; Dai, J.; Wang, H.; Geng, Y.; Yan, D. Chem. Phys. Lett. 2007, 446, 329.
[76] Yang, J.; Schumann, S.; Hatton, R. A.; Jones, T. Org. Electron. 2010, 11, 1399.
[77] Gommans, H.; Aernouts, T.; Verreet, B.; Heremans, P.; Medina, A.; Claessens, C. G.; Torres, T. Adv. Funct. Mater. 2009, 19, 3435.
[78] Sullivan, P.; Duraud, A.; Beaumont, N.; Mirri, G.; Tucker, J. H.; Hatton, R. A.; Shipman, M.; Jones, T. S. Adv. Energy Mater. 2011, 1, 352.
[79] Verreet, B.; Rand, B. P.; Cheyns, D.; Hadipour, A.; Aernouts, T.; Heremans, P.; Medina, A.; Claessens, C. G.; Torres, T. Adv. Energy Mater. 2011, 1, 565.
[80] Zhou, Y.; Pei, J.; Dong, Q.; Sun, X.; Liu, Y.; Tian, W. J. Phys. Chem. C 2009, 113, 7882.
[81] Zhou, T.; Jia, T.; Kang, B.; Li, F.; Fahlman, M.; Wang, Y. Adv. Energy Mater. 2011, 1, 431.
[82] Schwenn, P. E.; Gui, K.; Nardes, A. M.; Krueger, K. B.; Lee, K. H.; Mutkins, K.; Rubinstein-Dunlop, H.; Shaw, P. E.; Kopidakis, N.; Burn, P. L.; Meredith, P. Adv. Energy Mater. 2011, 1, 73.
[83] Fang, Y.; Pandey, A. K.; Nardes, A. M.; Kopidakis, N.; Burn, P. L.; Meredith, P. Adv. Energy Mater. 2013, 3, 54. Deng, X.; Zheng, L.; Yang, C.; Li, Y.; Yu, G.; Cao, Y. J. Phys. Chem. B 2004, 108, 3451.
/
〈 |
|
〉 |