Notes

Synthesis and Bioactivity of Monocyclic β-Lactams and 4-Thiazolidinones Derivatives Containing Acridinyl

Expand
  • a. College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046;
    b. Institute of Industrial Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091

Received date: 2013-10-07

  Revised date: 2014-01-06

  Online published: 2014-02-12

Supported by

Project supported by the Natural Science Foundation of Xinjiang Uyghur Autonomous Region (No. 200421126) and the National Natural Science Foundation of China (No. 21062019).

Abstract

In this paper, 1-aryl-3-substituted-4-(9-acridinyl)azetidin-2-one derivatives L1L6 and 2-(9-acridinyl)- 3-aryl-1,3-thiazolidin-4-one derivatives T1T3 were synthesized through [2+2] cycloaddition reaction and cyclocondensation reaction of N-(p-substitutedaryl)-C-(9-acridinyl)formaldimines Schiff base with ketene, which in situ generated from chloroacetyl chloride and benzyloxyacetyl chloride in the presence of triethylamine, and mercaptoacetic acid. The synthesized compounds have also been screened in vitro anticancer activities and the leukocyte common antigen activities. The results showed that the inhibitory activity of compound L4 is 79.4% on human tumor cell HL-60 (Leucocythemia), at the test concentration of 10 μmol/L. The inhibitory activities of compounds L5, L6 and T3 on Cdc25B (Cell division cycle 25B) phosphatase are 80.64%, 99.75% and 99.34% at the test concentration of 20 μg/mL, respectively. The inhibitory activities of compounds L6 and T3 on CD45 (leukocyte common antigen, LCA) protein tyrosine phosphatase A are 86.12% and 91.03% at the test concentration of 20 μmol/mL, respectively. The structure-activity relationship of these compounds was investigated on the bases of bioassay experimental results of these compounds.

Cite this article

Mahsud Liwayidin, Imerhasan Mukhtar, Mahmud Muhammad Amin, Helil Setiwaldi, Liu Huajun . Synthesis and Bioactivity of Monocyclic β-Lactams and 4-Thiazolidinones Derivatives Containing Acridinyl[J]. Chinese Journal of Organic Chemistry, 2014 , 34(6) : 1235 -1239 . DOI: 10.6023/cjoc201308034

References

[1] Kaluza, Z.; Abramski, W.; Chemielewski, M. Indian J. Chem. 1994, 338, 913.
[2] Imada, A.; Kitano, K.; Kintaka, K.; Muroi, M.; Asai, M. Nature 1981, 289, 590.
[3] Palomo, C.; Aizpurua, J. M.; Galarza, R.; Mielgo, A. J. Chem. Soc., Chem. Commun. 1996, 633.
[4] Verma, A.; Saraf, S. K. Eur. J. Med. Chem. 2008, 43, 897.
[5] Hamama, W. S.; Ismail, M. A.; Shaaban, S.; Zoorob, H. H. J. Heterocycl. Chem. 2008. 45, 939.
[6] Mosher, M. D.; Natale, N. R. J. Heterocycl. Chem. 1995, 32, 779.
[7] Phanstiel IV, O.; Price, H. L.; Wang, L.; Juusola, J.; Kline, M.; Shah, S. M. J. Org. Chem. 2000, 65, 5590.
[8] Chen, Q.-P.; Deady, L. W.; Baguley, B. C.; Denny, W. A. J. Med. Chem. 1994, 37, 593.
[9] Zhu, Y.-W.; Zhao, G.-C.; Zhou, Y.-Y. Chin. J. Synth. Chem. 2002, 10(1), 65 (in Chinese).
(朱燕舞, 赵光超, 周运友, 合成化学, 2002, 10(1), 65.)
[10] Pihlaja, K.; Tahtinen, P.; Shaikhutdinov, R.; Hartikainen, H.; Ovcharenko, V.; Agirbas, H.; Guner, S. J. Heterocycl. Chem. 2004, 41, 741.
[11] Mollet, K.; D'hooghe, M.; Kimpe, N. D. Tetrahedron 2012, 68: 10787.
[12] Krasodomska, M.; Serda, P. Monatsh. Chem. 2007, 138, 199.
[13] Kumar, K. S.; Ganguly, S.; Veerasamy, R.; Clercq, E. D. Eur. J. Med. Chem. 2010, 45, 5474.
[14] Chhajed, S. S.; Manisha, P.; Bastikar, V. A.; Animeshchandra, H.; Ingle, V. N.; Upasani, C. D.; Wazalwar, S. S. Bioorg. Med. Chem. Lett. 2010, 20(12), 3640.
[15] Sharma, S.; Singh, T.; Mittal, R.; Saxena, K. K.; Srivastava1, V. K.; Kumar, A. Arch. Pharm. Chem. Life Sci. 2006, 339(3), 145.
[16] Popp, F. D. J. Org. Chem. 1962, 27, 2658.
[17] Tsuge, O.; Nishinohara, M.; Tashiro, M. Bull. Chem. Soc. Jpn. 1963, 36, 1477.
[18] Imerhasan, M.; Wang, T.; Helil, S.; Osman, K.; Muhammad, T. Chin. J. Org. Chem. 2010, 30(12), 1884 (in Chinese).
(穆赫塔尔·伊米尔艾山, 王婷, 萨提瓦尔迪·海力力, 库尔班·吾斯曼, 吐尔洪·买买提, 有机化学, 2010, 30(12), 1884.)
Outlines

/