From L-menthol, 5-(2-hydroxyethyl)-4-methylthiazole, paraformaldehyde and epoxyethane, a novel thermoregulated thiazolium chiral ionic liquid was synthesized and used for catalyzing the reaction of trans-cinnamaldehyde with methyl p-formylbenzoate to stereoselectively synthesize γ-butyrolactones with two chiral centres. By using the thermoregulation of the catalyst, the catalytic reaction in the thermoregulated solvent had the feature of "Thermoregulated Phase-separable Catalysis", and the recycling of the ionic liquid catalyst was easily achieved. THF/n-hexane (V:V=2.5:2) mixed solvent was selected as the thermoregulated solvent. Under the conditions of 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU) as the alkaline reagent, the quantity of catalyst 10 mol%, the reaction temperature 35 ℃, and the reaction time 16 h, the conversion of trans-cinnamaldehyde could reach 95.4%, and the selectivity of γ-butyrolactones was 80.4%. The ratio of cis/trans product was 3.3, and the ee values of cis-product and trans-product were 21.3% and 16.1%, respectively. The recycling efficiency of the ionic liquid catalyst was investigated. During the recycles of 4 times, the catalytic activity of the ionic liquid was nearly unchanged.
[1] He, J.; Ji, R. Y. Spice Introduction, China Petrochemical Press, Beijing, 1993, pp. 5~6 (in Chinese).
(何坚, 季儒英, 香料概论, 中国石化出版社, 北京, 1993, pp. 5~6.)
[2] Fan, Y. C. Spice and Application, Chemical Industry Press, Beijing, 1990, pp. 2~3 (in Chinese).
(范有成, 香料及其应用, 北京化学工业出版社, 北京, 1990, pp. 2~3.)
[3] Rodriguez, A. D.; Pina, I. C.; Barness C. L. J. Org. Chem. 1995, 60, 8096.
[4] Trost, B. M.; Tang, W.; Schulte, J. Org. Lett. 2000, 2, 4013.
[5] Pour, M.; Spulak, M.; Buchta, V.; Kubanova, P.; Voprsalova, M.; Wsol, V.; Fakova, H.; Koudelka, P.; Pourova, H.; Schiller, R. J. Med. Chem. 2001, 44, 2701.
[6] Peterson, E. M.; Xu, K.; Holland, K. D.; Mckeon, A. C.; Rothman, S. M.; Ferrendelli, J. A.; Covey, D. F. J. Med. Chem. 1994, 37, 275.
[7] Oeveren, Van A.; Jansen, J. F. G. A.; Feringa, B. L. J. Org. Chem. 1994, 59, 5999.
[8] Seitz, M.; Reiser, O. Curr. Opin. Chem. Biol. 2005, 9, 285.
[9] Forzato, C.; Gandolfi, R.; Molinari, F.; Nitti, P.; Pitaccoa, G.; Valentina, E. Tetrahedron: Asymmetry 2001, 12, 1039.
[10] Li, Y.; Zhao, Z. A.; He, H.; You, S. L. Adv. Synth. Catal. 2008, 350, 1885.
[11] Enders, D.; Kroll, M.; Raabe, G.; Runsink, J. Angew. Chem., Int. Ed. 1998, 37, 1673.
[12] Whisler, M. C.; Vaillancourt, L.; Beak, P. Org. Lett. 2000, 2, 2655.
[13] Kise, N.; Hirata, Y.; Harnaguchi, T.; Ueda, N. Tetrahedron Lett. 1999, 40, 8125.
[14] Pippel, D. J.; Curtis, M. D.; Du, H.; Beak, P. J. Org. Chem. 1998, 63, 2.
[15] Greaves, T. L.; Drummond, C. J. Chem. Rev. 2008, 108, 206.
[16] Baudequin, C.; Baudoux, J.; Levillain, J.; Cahard, D.; Gaumont, A. C.; Plaquevent, J. C. Tetrahedron: Asymmetry 2003, 14, 3081.
[17] Zhao, D. B.; Wu, M.; Kou, Y.; Min, E. Z. Catal. Today 2002, 74, 157.
[18] Yu, F. L.; Zhang, R. L.; Xie, C. X.; Yu, S. T. Green Chem. 2010, 12, 1196.
[19] Yu, F. L.; Zhang, R. L.; Xie, C. X.; Yu, S. T. Tetrahedron 2010, 66, 9145.
[20] Jiang, J. J. J. Qingdao Univ. Sci. Technol. (Nat. Sci. Ed.) 2011, 32, 569 (in Chinese).
(蒋佳佳, 青岛科技大学学报(自然科学版), 2011, 32, 569.)
[21] Yu, F. L.; Jiang, J. J.; Zhao, D. M.; Xie, C. X.; Yu, S. T. RSC Adv. 2013, 3, 3996.
[22] Pernak, J.; Feder-Kubis, J. Chem. Eur. J. 2005, 11, 4441.
[23] Burstein, C.; Glorius, F. Angew. Chem., Int. Ed. 2004, 43, 6205.