Chinese Journal of Organic Chemistry >
Synthesis of A Novel exTTF Derivative and Its Electron Transfer towards p-Chloranil
Received date: 2013-12-03
Revised date: 2014-01-20
Online published: 2014-03-14
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21172105, 20872058)
Using anthraquinone and 1,3-dithiol-2-thiones (1 and 3) as starting materials, the exTTF compound 9-[4,5- bis((2-cyanoethyl)thio)-1,3-dithiol-2-ylidene]-10-[4,5-(ethylenedithio)-1,3-dithiol-2-ylidene]-9,10-dihydroanthracene (4) was prepared by tripmethyl phosphite-induced Wittig cross-coupling reaction. In the presence of cesium hydroxide, the exTTF 4 was reacted with 2-(chloroethoxy)ethanol to obtain the exTTF compound 9-[4-[(2-cyanoethyl)-5-[(2-(2-hydroxyethoxy)- ethyl)thio]-1,3-dithiol-2-ylidene]-10-[4,5-(ethylenedithio)-1,3-dithiol-2-ylidene]-9,10-dihydroathracene (5) in 76% yield. The target exTTF compound 9-[4-[(2-cyanoethyl)-5-[(2-(2-(4-nitrophenoxy)ethoxy)ethyl)thio]-1,3-dithiol-2-ylidene]-10-[4,5- (ethylenedithio)-1,3-ditiol-2-ylidene]-9,10-dihydroanthracene (6) was obtained by Mitsunobu reaction of 5 and p-nitrophenol using diethyl azodicarboxy/triphenylphosphine (DEAD/PPh3) system in 24% yield. Meanwhile, the structure of exTTF 4 was identified by X-ray diffraction analysis. The cyclic voltammogramsed showed that the compound 6 displayed two-electron quasi-reversible redox processes. Moreover, the UV-Vis absorption studies show that intermolecular electron transfer between exTTF 6 and p-chloranil may be promoted by specific metal ions such as Sc3+, Al3+ and Pb2+.
Key words: exTTF; crystal structure; p-chloranil; electron transfer
Zhao Bangtun , Chen Xiuhua , Li Jiajia , Zhu Weimin . Synthesis of A Novel exTTF Derivative and Its Electron Transfer towards p-Chloranil[J]. Chinese Journal of Organic Chemistry, 2014 , 34(7) : 1417 -1423 . DOI: 10.6023/cjoc201312004
[1] Canevet, D.; Sallé, M.; Zhang, G. X.; Zhang, D. Q.; Zhu, D. B. Chem. Commun. 2009, 2245.
[2] Yamada, J.; Sugimoto, T. TTF Chemistry-Fundamentals and Applications of Tetrathiafulvalene, Kodansha and Springer, Tokyo, 2004.
[3] Chen, T.; Liu, W. J.; Cong, Z. Q.; Yin, B. Z. Chin. J. Org. Chem. 2005, 25, 570 (in Chinese).
(陈铁, 刘武军, 丛志奇, 尹炳柱, 有机化学, 2005, 25, 570.)
[4] Li, H. Q.; Song, Y. X.; Li, X. M. Chin. J. Org. Chem. 2009, 29, 197 (in Chinese).
(李洪启, 宋燕西, 李秀梅, 有机化学, 2009, 29, 197.)
[5] Feng, M.; Gao, L.; Deng, Z. T.; Ji, W.; Guo, X. F.; Du, S. X.; Shi, D. X.; Zhang, D. Q.; Zhu, D. B.; Gao, H. J. J. Am. Chem. Soc. 2007, 129, 2204.
[6] Bendikov, M.; Wudl, F.; Perepichka, D. F. Chem. Rev. 2004, 104, 4891.
[7] Zhu, Y. L.; Cao, L.; Ma, K. R.; Tian, L. B.; Wang, X. L.; Su, Z. M. Chem. J. Chin. Univ. 2013, 34, 952.
[8] Brunetti, F. G.; López, J. L.; Atienza, C.; Martín, N. J. Mater. Chem. 2012, 22, 4188.
[9] Christensen, C. A.; Batsanov, A. S.; Bryce, M. R. J. Org. Chem. 2007, 72, 1301.
[10] Segura, J. L.; Martín, N. Angew. Chem., Int. Ed. 2001, 40, 1372.
[11] Ren, X. F.; Xu, J. L.; Chen, S. H. Chin. J. Org. Chem. 2006, 26, 454 (in Chinese).
(任新锋, 徐菁利, 陈思浩, 有机化学, 2006, 26, 454.)
[12] Grimm, B.; Isla, H.; Pérez, E. M.; Martín, N.; Guldi, D. M. Chem. Commun. 2011, 47, 7449.
[13] Grimm, B.; Santos, J.; Illescas, B. M.; Munoz, A.; Guldi, D. M.; Martín, N. J. Am. Chem. Soc. 2010, 132, 17387.
[14] Hu, L.; Qin, J.; Zhu, R. M.; Li, Y. Z.; Zuo, J. L.; You, X. Z. Eur. J. Inorg. Chem. 2012, 2494.
[15] Simonsen, K. B.; Svenstrup, N.; Lau, J.; Simonsen, O.; Mφrk, P.; Kristensen, J.; Becher, J. Synthesis 1996, 407.
[16] Svenstrup, N.; Becher, J. Synthesis 1995, 215.
[17] Bruker APEX2 (Version 1.027) and SAINT (Version 7.12A), Bruker AXS Inc., Madison, Wisconsin, USA, 2004.
[18] Sheldrick, G. M. SADABS, University of Göttingen, Germany, 1996.
[19] Sheldrick, G. M. SHELXS97 and SHELXL97, University of Göttingen, Germany, 1997.
/
〈 |
|
〉 |