Chinese Journal of Organic Chemistry >
Advance in the Research on Quinomycins Biosynthesis
Received date: 2014-01-09
Revised date: 2014-02-17
Online published: 2014-03-10
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 31170085, 31070058) and the Key Project of China National Programs for Fundamental Research and Development (No. 2012CB721004).
Quinomycins are a type of cyclic oligopeptide antibiotics, featuring a pair of moieties, either quinoxaline-2-carboxy or 3-hydroxyquinoline-2-carboxy group. The characteristic structural units are capable of intercalating preferentially into particular DNA basepairs, thereby inhibiting DNA replication and transcription and hence confer remarkable tumor-inhibiting potency to quinomycins. Herein, an overview is made about the development of the exploration on quinomycin biosynthesis mainly during the past decade. Biosynthetic gene clusters are compared among various quinomycin family members, common biochemical reactions experienced in the biosynthesis of these compounds and natural products of other types as well as tryptophan catabolism are inducted with functional characteristics of the enzymes responsible for these reactions dissected, concurrently lending profundity to the revelation of the reasons for the formation of structural features shared and variances differentiated by quinomycins. Based on the elaboration, an exemplar is presented about the combinatorial biosynthesis in E. coli, the heterologous host to produce the unnatural natural product of quinomycin family, showing the potentiality of industrialization for the biosynthesis.
Key words: tumor inhibiting; quinomycin; natural product; biosynthesis
Zhang Chen , Kong Lingxin , Lei Xuan , Deng Zixin , You Delin . Advance in the Research on Quinomycins Biosynthesis[J]. Chinese Journal of Organic Chemistry, 2014 , 34(6) : 1240 -1252 . DOI: 10.6023/cjoc201401012
[1] Kleinkauf, H.; Döhren, H. V. Eur. J. Biochem. 1996, 236, 2.
[2] Hoffmeister, D.; Keller, N. P. Nat. Prod. Rep. 2007, 24, 2.
[3] Watanabe, K.; Oguri, H.; Oikawa, H. Curr. Opin. Chem. Biol. 2009, 13, 2.
[4] Lee, J. S.; Waring, M. J. Biochem. J. 1978, 173, 1.
[5] Foster, B. J.; Clagett-Carr, K.; Shoemaker, D. D.; Suffness, M.; Plowman, J.; Trissel, L. A.; Grieshaber, C. K.; Leyland-Jones, B. Invest. New Drugs 1985, 3, 4.
[6] Glund, K.; Schlumbohm, W.; Bapat, M.; Keller, U. Biochemistry 1990, 29, 14.
[7] Schmoock, G.; Pfennig, F.; Jewiarz, J.; Schlumbohm, W.; Laubinger, W.; Schauwecker, F.; Keller, U. Biol. Chem. 2005, 280, 6.
[8] Watanabe, K.; Hotta, K.; Praseuth, A. P.; Koketsu, K.; Migita, A.; Boddy, C. N.; Wang, C. C.; Oguri, H.; Oikawa, H. Nat. Chem. Biol. 2006, 2, 8.
[9] Praseuth, A. P.; Wang, C. C.; Watanabe, K.; Hotta, K.; Oguri, H.; Oikawa, H. Biotechnol. Prog. 2008, 24, 6.
[10] Zhang, C.; Kong, L. X.; Liu, Q.; Lei, X.; Zhu, T.; Yin, J. PLoS One. 2013, 8, 2.
[11] Lombo, F.; Velasco, A.; Castro, A.; de la Calle, F.; Brana, A. F.; Sánchez-Puelles, J. M.; Méndez, C.; Salas, J. A. ChemBioChem 2006, 7, 2.
[12] Koketsu, K.; Oguri, H.; Watanabe, K.; Oikawa, H. Org. Lett. 2006, 8, 21.
[13] Sheoran, A.; King, A.; Velasco, A.; Pero, J. M.; Garneau- Tsodikova, S. Mol. Biosyst. 2008, 4, 6.
[14] Watanabe, K.; Hotta, K.; Nakaya, M.; Praseuth, A. P.; Wang, C. C.; Inada, D.; Takahashi, K.; Fukushi, E.; Oguri, H.; Oikawa, H. J. Am. Chem. Soc. 2009, 131, 26.
[15] Felnagle, E. A.; Barkei, J. J.; Park, H.; Podevels, A. M.; McMahon, M. D.; Drott, D. W.; Thomas, M. G. Biochemistry 2010, 49, 41.
[16] Zhang, W.; Heemstra, J. J.; Walsh, C. T.; Imker, H. J. Biochemistry 2010, 49, 46.
[17] Baltz, R. H. J. Ind. Microbiol. Biotechnol. 2011, 38, 11.
[18] Wolpert, M.; Gust, B.; Kammerer, B.; Heide, L. Microbiology 2007, 153, 5.
[19] Van, L. S.; Lin, S.; Dorrestein, P. C.; Kelleher, N. L.; Shen, B. J. Biol. Chem. 2006, 281, 40.
[20] Boll, B.; Taubitz, T.; Heide, L. J. Biol. Chem. 2011, 286, 42.
[21] Herbst, D. A.; Boll, B.; Zocher, G.; Stehle, T.; Heide, L. J. Biol. Chem. 2013, 288, 3.
[22] Chen, H.; Walsh, C. T. Chem. Biol. 2001, 8, 4.
[23] Chen, H.; Hubbard, B. K.; O'Connor, S. E.; Walsh, C. T. Chem. Biol. 2002, 9, 1.
[24] Mady, A. S.; Zolova, O. E.; Millan, M. A.; Villamizar, G.; de la Calle, F.; Lombó, F.; Garneau-Tsodikova, S. Mol. Biosyst. 2011, 7, 6.
[25] Forouhar, F.; Anderson, J. L.; Mowat, C. G.; Vorobiev, S. M.; Hussain, A.; Abashidze, M.; Bruckmann, C.; Thackray, S. J.; Seetharaman, J.; Tucker, T.; Xiao, R.; Ma, L. C.; Zhao, L.; Acton, T. B.; Montelione, G. T.; Chapman, S. K.; Tong, L. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 2.
[26] Koketsu, K.; Oguri, H.; Watanabe, K.; Oikawa, H. Chem. Biol. 2008, 15, 8.
[27] Watanabe, K.; Hotta, K.; Nakaya, M.; Praseuth, A. P.; Wang, C. C.; Inada, D.; Takahashi, K.; Fukushi, E.; Oguri, H.; Oikawa, H. J. Am. Chem. Soc. 2009, 131, 26.
[28] Challis, G. L. Nat. Chem. Biol. 2006, 2, 8.
/
〈 |
|
〉 |