Articles

Backbone Effect of Macrocycle Host Compound as Anion Receptor

  • Wei Jinyan ,
  • Xu Lijin ,
  • Gong Hanyuan
Expand
  • a Department of Chemistry, Renmin University of China, Beijing 100872;
    b College of Chemistry, Beijing Normal University, Beijing 100875

Received date: 2014-02-27

  Revised date: 2014-03-12

  Online published: 2014-04-10

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21202199, 21372258).

Abstract

Two novel macrocycle hosts with flexible frameworks and cavities, cyclo[2](2,6-di(1H-imidazol-1-yl)pyridine)[2] (1,4-dimethylenebenzene) (14+) and cyclo[2](2,6-di(1H-imidazol-1-yl)pyridine)[2](1,2-dimethylenebenzene) (24+), were synthesized with high yields via cyclization reactions between 2,6-di(1H-imidazol-1-yl)pyridine and 1,4-bisbromomethyl benzene or 1,2-bisbromomethyl-benzene. Herein, the interactions between 14+ or 24+ and a series of inorganic anionic guests were studied in detail via the following methods: (1) 1H NMR spectroscopy in d6-DMSO solution; (2) electrospray ionization mass spectrometry (ESI-MS) in gas phase; (3) single crystal X-ray crystallography in solid state. It is noted that the anionic guest species has different shapes, namely anions with ball shapes like Cl-, Br-, I-; linear anion N3-; triangle or tetrahedron HSO4-. The study found that 14+ can bind more small inorganic anion species than macrocycle 24+. In addition, the result implied that when the inorganic anion guest acts as strong intermolecular hydrogen bond acceptor (i.e. anionic guest (A-) such as Cl-, or ), the associate constant (Ka) maintains Ka[24+·A-]3+>Ka[14+·A-]3+; on the contrary, when anionic guest A- (Br- or I-) is hard to form intermolecular hydrogen bonds but easy contribute to anion-π interaction, the association constants of the 1:1 (host:guest) complexes follow another trend (i.e. Ka[24+·A-]3+<Ka[14+·A-]3+ when A- is Br- or I-). It is suggested that the skeleton of macrocycle host 24+ well organize its four strong acidic imidazolium C—H bonds for effective small inorganic anion binding mainly via intermolecular hydrogen bonds; meanwhile the bigger cavity and longer distances between the strong acidic imidazolium C—H bonds of 14+ leads two possible results: (1) worse cooperation of its acidic C—H bonds weaken the intermolecular hydrogen bonding interactions for small anion complexation; (2) its more relax backbone has possible benefits of binding more anion guests. In summary, small distinctions of the backbones between 14+ and 24+ result in significantly different anion complexations, including stoichiometries, association constants, binding modes, etc. This finding will help to guide following macrocyclic anion receptor design and study.

Cite this article

Wei Jinyan , Xu Lijin , Gong Hanyuan . Backbone Effect of Macrocycle Host Compound as Anion Receptor[J]. Chinese Journal of Organic Chemistry, 2014 , 34(8) : 1652 -1661 . DOI: 10.6023/cjoc201402033

References

[1] Lehn, J. M.; Atwood, J. L.; Davies, L. E. Comprehensive Supramolecular Chemistry, Pergamon, New York, 1996, p. 27.
[2] Shen, J.-C. Supramolecular Layered StructuresAssembly and Functionalization, Science Press, Beijing, 2004, p. 1 (in Chinese).
(沈家骢, 超分子层状结构——组装与功能, 科学出版社, 北京, 2004, p. 1.)
[3] Liu, Y.; You, C.-C.; Zhang, H.-Y. Supramolecular ChemistryMolecular Recognition and Assembly of Synthesized Receptors, Nankai University Press, Tianjin, 2001, p. 1 (in Chinese).
(刘育, 尤长城, 张衡益, 超分子化学——合成受体的分子识别与组装, 南开大学出版社, 天津, 2001, p. 1.)
[4] Lehn, J. M. Angew. Chem., Int. Ed. 1988, 27.
[5] Dodziuk, H. Introduction to Supramolecular Chemistry, Kluwer Academic Publishers, London, 2002.
[6] Lehn, J. M. Proc. Natl. Acad. Sci. 2002, 99, 4763.
[7] Steed, J. W.; Atwood, J. L. Supramol. Chem. 2006, 62.
[8] Levason, W.; Reid, G.; Ncleverty, J. A. Comprehensive Coordination Chemistry II, Pergamon, Oxford, 2004, p. 18.
[9] Prauzsch, V.; Ibach, S.; Vogtle, F. J. Inclusion Phenom. Macrocylic Chem. 1993, 33, 427.
[10] Gale, P. A. Chem. Commun. 2011, 47, 82.
[11] Sessler, J. L.; Gale, P. A.; Stoddart, J. F.; Cho, W. S. Anion Receptor Chemistry; Monographs in Supramolecular Chemistry, Royal Society of Chemistry, Cambridge, U. K., 2006.
[12] Wenzel, M.; Hiscock, J. R.; Gale, P. A. Chem. Soc. Rev. 2012, 41, 480.
[13] (a) Beer, P. D.; Gale, P. A. Angew. Chem., Int. Ed. 2001, 40, 486.
(b) Gong, H.-Y.; Xu, L.-J.; Zhou, L. Acta Chim. Sinica 2014, 72, 447 (in Chinese).
(龚汉元, 徐立进, 周丽, 化学学报, 2014, 72, 447.)
[14] (a) Ryo, S.; Li, W.; Kakuchi, T. Macromolecules 2011, 44, 4249.
(b) Zhang, D.-S.; Chen, J.-P.; Zeng, Y.; Yu, T.-J.; Li, Y. Chin. J. Org. Chem. 2013, 33, 110 (in Chinese).
(张读山, 陈金平, 曾毅, 于天君, 李嫕, 有机化学, 2013, 33, 110.)
[15] Lehn, J. M.; Hosseini, M. W.; Sessions, R. B. J. Am. Chem. Soc. 1981, 103, 1282.
[16] Lehn, J. M.; Hosseini, M. W. J. Am. Chem. Soc. 1987, 109, 7047.
[17] (a) Liu, G.; Shao, J. Acta Chim. Sinica 2011, 69, 1070 (in Chinese).
(刘阁, 邵杰, 化学学报, 2011, 69, 1070.)
(b) Li, Y.; Zhang, F.; Zou, L.-B.; Bao, X.-P. Chin. J. Org. Chem. 2013, 33, 2485 (in Chinese).
(刘勇, 张峰, 邹林波, 蹇军友, 鲍小平, 有机化学, 2013, 33, 2485.)
[18] Sessler, J. L.; Tomat, E. Acc. Chem. Res. 2007, 40, 371.
[19] Sessler, J. L.; Park, J. S.; Karnas, E.; Ohkubo, K. Science 2010, 329, 1324.
[20] Alcalde, E.; Dinares, I.; Mesquida, N. Top. Heterocycl. Chem. 2010, 24, 267.
[21] Willans, C. E.; Anderson, K. M.; Potts, L. C.; Steed, J. W. Org. Biomol. Chem. 2009, 7, 1500.
[22] Jiang, L.-S.; Yang, D.-K. Acta Chim. Sinica 2012, 70, 1385 (in Chinese).
(蒋腊生, 杨登科, 化学学报, 2012, 70, 1385.)
[23] Yoon, J.; Xu, Z.; Singh, N. J.; Sook, K.; Spring, D. R.; Kim, K. S. Chem. Eur. J. 2011, 17, 1163.
[24] Yoon, J.; Xu, Z.; Kim, S. K. Chem. Soc. Rev. 2010, 39, 1457.
[25] Yoon, J.; Kim, J. K.; Singh, N. J.; Kim, K. S. Chem. Soc. Rev. 2006, 35, 355.
[26] Ihm, H.; Yun, S.; Kim, H. G.; Kim, J. K.; Kim, K. S. Org. Lett. 2002, 4, 2897.
[27] Kim, S. K. Angew. Chem., Int. Ed. 2005, 44, 2899.
[28] Gao, G.; You, J.-S.; Zhou, H.-J. Chem. Commun. 2013, 49, 1832.
[29] You, J.-S.; Zhou, H.-J.; Gao, G. J. Am. Chem. Soc. 2013, 135, 14908.
[30] Hua, Y.; Flood, A. H. Chem. Soc. Rev. 2010, 39, 1262.
[31] Wei, T.-B.; Lin, Q.; Zhang, Y.-M. Sci. China, Ser. B 2004, 47, 295 (in Chinese).
(魏太保, 林奇, 张有明, 中国科学(B辑), 2004, 47, 295.)
[32] Sessler, J. L.; Cai, J. J.; Gong, H. Y.; Arambula, J. F., Hay, B. P. J. Am. Chem. Soc. 2010, 132, 14058.
[33] Wei, T.-b.; Zhang, Y.-M. Chin. J. Org. Chem. 2009, 29, 575 (in Chinese).
(魏太保, 张有明, 有机化学, 2009, 29, 575.)
[34] Wang, M.-X. Wang, D.-X. J. Am. Chem. Soc. 2013, 135, 892.
[35] Sessler, J. L.; Gong, H.-Y.; Rambo, B. M. Nat. Chem. 2010, 2, 406.
[36] Sessler, J. L.; Gong, H.-Y.; Rambo, B. M. J. Am. Chem. Soc. 2013, 135, 6330.
[37] Sessler, J. L.; Gong, H.-Y.; Rambo, B. M. J. Am. Chem. Soc. 2011, 133, 1526.
[38] Sessler, J. L.; Gong, H.-Y.; Rambo, B. M. Chem. Commun. 2011, 47, 5973.
[39] Oki, O. M. Applications of Dynamic NMR Spectroscopy to Organic Chemistry, VCH, Weinheim, 1985.
[40] Job, P. Ann. Chim. (Paris) 1928, 9, 113.
[41] Gans, P.; Sabatini, A.; Vacca, A. Talanta 1996, 43, 1739.
Outlines

/