Reviews

Research Progress of Graphene and Its Composites in Organic Synthesis

  • Zhang Li ,
  • Gao Shutao ,
  • Liu Weihua ,
  • Tang Ranxiao ,
  • Shang Ningzhao ,
  • Wang Chun ,
  • Wang Zhi
Expand
  • College of Science, Agricultural University of Hebei, Baoding 071001

Received date: 2014-03-01

  Revised date: 2014-04-05

  Online published: 2014-04-16

Supported by

Project supported by the Natural Science Foundation of Hebei Province (No. B2011204051) and the Innovation Research Program of Department of Education of Hebei for Hebei Provincial Universities (No. LJRC009).

Abstract

As a novel carbon nanomaterial, graphene based composite has received much attention in catalysis due to its unique characterisics such as large surface area, good thermal and chemical stability, strong hydrophobicity, easy modification, etc. Graphene and its composites have been applied in the catalysis of different organic reactions, such as Suzuki-Miyaura, Heck, and reduction of nitroarenes. The research progress of graphene-based composites catalyst is briefly reviewed in the paper.

Cite this article

Zhang Li , Gao Shutao , Liu Weihua , Tang Ranxiao , Shang Ningzhao , Wang Chun , Wang Zhi . Research Progress of Graphene and Its Composites in Organic Synthesis[J]. Chinese Journal of Organic Chemistry, 2014 , 34(8) : 1542 -1548 . DOI: 10.6023/cjoc201403001

References

[1] (a) Schedin, F.; Geim, A.; Morozov, S.; Hill, E.; Blake, P.; Katsnelson, M.; Novoselov, K. Nat. Mater. 2007, 6, 652.

(b) Brumfiel, G. Nature 2009, 458, 390.

(c) Sykes, E. C. H. Nat. Chem. 2009, 1, 175.

(d) Zhang, Y.-Q.; Liang, Y.-M.; Zhou, J.-X. Acta Chim. Sinica 2014, 72, 367 (in Chinese).

(张芸秋, 梁勇明, 周建新, 化学学报, 2014, 72, 367.)

(e) Lin, Y.-W.; Guo, X.-F. Acta Chim. Sinica 2014, 72, 277 (in Chinese).

(林源为, 郭雪峰, 化学学报, 2014, 72, 277.)

[2] Scheuermann, G. M.; Rumi, L.; Steurer, P.; Bannwarth, W.; Mülhaupt, R. J. Am. Chem. Soc. 2009, 131, 8262.

[3] Li, Y.; Fan, X.; Qi, J.; Ji, J.; Wang, S.; Zhang, G.; Zhang, F. Nano Res. 2010, 3, 429.

[4] Li, Y.; Fan, X.; Qi, J.; Ji, J.; Wang, S.; Zhang, G.; Zhang, F. Mater. Res. Bull. 2010, 45, 1413.

[5] Siamaki, A. R.; Khder, A. E. R. S.; Abdelsayed, V.; El-Shall, M. S.; Gupton, B. F. J. Catal. 2011, 279, 1.

[6] He, Y. Q.; Zhang, N. N.; Liu, Y.; Gao, J. P.; Yi, M. C.; Gong, Q. J.; Qiu, H. X. Chin. Chem. Lett. 2012, 23, 41.

[7] Shendage, S. S.; Singh, A. S.; Nagarkar, J. M. Tetrahedron Lett. 2013, 54, 3457.

[8] Kim, S. H.; Jeong, G. H.; Choi, D.; Yoon, S.; Jeon, H. B.; Lee, S. M.; Kim, S. W. J. Colloid Interface Sci. 2013, 389, 85.

[9] Hu, J.; Wang, Y.; Han, M.; Zhou, Y.; Jiang, X.; Sun, P. Catal. Sci. Technol. 2012, 2, 2332.

[10] Shendage, S. S.; Patil, U. B.; Nagarkar, J. M. Tetrahedron Lett. 2013, 54, 3457.

[11] Shang, N.-Z.; Feng, C.; Zhang, H.; Gao, S.-T.; Tang, R.; Wang, C.; Wang, Z. Catal. Commun. 2013, 40, 111.

[12] Lee, K. H.; Han, S. W.; Kwon, K. Y.; Park, J. B. J. Colloid Inerface Sci. 2013, 403, 127.

[13] Yousef, A.; Barakat, N. A.; El-Newehy, M.; Kim, H. Y. Int. J. Hydrogen Energy 2012, 37, 17715

[14] Kilic, B.; ?encanl?, S.; Metin, Ö. J. Mol. Catal. A: Chem. 2012, 361362, 104.

[15] Metin, Ö.; Kayhan, E.; Özkar, S.; Schneider, J. J. Int. J. Hydrogen Energy 2012, 37, 8161.

[16] Yang, L.; Cao, N.; Du, C.; Dai, H.; Hu, K.; Luo, W.; Cheng, G. Mater. Lett. 2014, 115, 113.

[17] Cao, N.; Su, J.; Luo, W.; Cheng, G. Catal. Commun. 2014, 43, 47.

[18] Li, J.; Liu, C.-Y.; Liu, Y. J. Mater. Chem. 2012, 22, 8426.

[19] Qu, J-C.; Ren, C.-L.; Dong, Y.-L.; Chang, Y.-P.; Zhou, M.; Chen, X.-G. Chem. Eng. J. 2012, 211212, 412.

[20] Gupta, V. K.; Atar, N.; Yola, M. L.; Ustundag, Z.; Uzun, L. Water Res. 2014, 48, 210.

[21] Nie, R.-F.; Wang, J.; Wang, L.; Qin, Y.; Chen, P.; Hou, Z. Carbon 2012, 50, 586.

[22] He, G.-Y.; Liu, W.-F.; Sun, X.-Q.; Chen, Q.; Wang, X.; Chen, H.-Q. Mater. Res. Bull. 2013, 48, 1885.

[23] Feng, C.; Zhang, H.-Y.; Shang, N.-Z.; Gao, S.-T.; Wang, C. Chin. Chem. Lett. 2013, 24, 539.

[24] Bian, J.; Wei, X.-W.; Wang, L.; Guan, Z. P. Chin. Chem. Lett. 2011, 22, 57.

[25] (a) Ge, Q.; Jenkins, S.; King, D. Chem. Phys. Lett. 2000, 327, 125.

(b) Kadossov, E.; Burghaus, U. Catal. Lett. 2010, 134, 228.

(c) Wang, H.; Liu, C.-J. Appl. Catal., B 2011, 106, 672.

[26] Li, Y.; Yu, Y.; Wang, J-G.; Song, J.; Li, Q.; Dong, M.; Liu, C.-J. Appl. Catal., B 2012, 125, 189.

[27] Zhang, C.; Lv, W.; Yang, Q.; Liu, Y. Appl. Surf. Sci. 2012, 258, 7795.

[28] Gao, Y.; Ma, D.; Wang, C.; Guan, J.; Bao, X. Chem. Commun. 2011, 47, 2432.

[29] Garg, B.; Bisht, T.; Chauhan, S. M. S. J. Inclusion Phenom. Mol. Recognit. Chem. 2011, 70, 249.

[30] Gale, P. A. Acc. Chem. Res. 2011, 44, 216.

[31] Gale, P. A.; Tong, C. C.; Haynes, C. J.; Adeosun, O.; Gross, D. E.; Karnas, E.; Sedenberg, E. M.; Quesada, R.; Sessler, J. L. J. Am. Chem. Soc. 2010, 132, 3240.

[32]Chauhan, S. M. S.; Mishra, S. Molecules 2011, 16, 7256.

[33] Jia, H. P.; Dreyer, D. R.; Bielawski, C. W. Adv. Synth. Catal. 2011, 353, 528.

[34] Mirza-Aghayan, M.; Boukherroub, R.; Nemati, M.; Rahimifard, M. Tetrahedron Lett. 2012, 53, 2473.

[35] Yu, H.; Wang, X.; Zhu, Y.; Zhuang, G.; Zhong, X.; Wang, J.-G. Chem. Phys. Lett. 2013, 583, 146.

Outlines

/