Chinese Journal of Organic Chemistry >
Investigation the Reaction Mechanism from Phenylacetaldehyde and Benzylamine to Polysubstituted Imidazole Catalyzed by Ι2
Received date: 2014-03-11
Revised date: 2014-04-08
Online published: 2014-05-05
Supported by
Project supported by the Department of Education of Sichuan Province (No. 13ZA0150).
The reaction mechanism from phenylacetaldehyde and benzylamine to polysubstituted imidazole catalyzed by Ι2 was studied by the density functional theory. All of the reactants, intermediates, transition states and product were optimized at B3LYP/6-31+G(d) level. The single point energy and zero point energy correction were calculated for the optimized configuration of each compound at B3LYP/6-311++G(d,p) level. Transition states have been confirmed via vibration analysis and intrinsic reactions coordinate (IRC), and nature bond orbital (NBO) and atoms in molecules (AIM) theories have been used to analysis orbits interaction and bond natures. Our results showed that the activation energy of the rate-determining step was 514.32 kJ·mol-1 without I2-catalyzed, however, the activation energy of the rate-determining step was 145.94 kJ·mol-1 with I2-catalyzed. It indicated that I2 catalyst promoted reaction effectively, and the C—H bond of ethyl of phenylacetaldehyde was activated by I2. In addition, polarized continuum model (PCM) method was adopted to discuss the effects of solvation. All calculations were consistent with experiments. It is predicted that the organic solvent dimethyl sulfoxide (DMSO) can effectively improve the reaction yield.
Zhang Lin , Zheng Yan , Pan Xiaoxiao , Li Laicai , Tian Anmin . Investigation the Reaction Mechanism from Phenylacetaldehyde and Benzylamine to Polysubstituted Imidazole Catalyzed by Ι2[J]. Chinese Journal of Organic Chemistry, 2014 , 34(8) : 1595 -1602 . DOI: 10.6023/cjoc201403027
[1] Zhou, B. Y.; Zhang, J.; Li, X. N.; She, M. Y.; Zhang, J.; Li, J. L.; Shi, Z. Chin. J. Org. Chem. 2013, 33, 423 (in Chinese).
(周葆悦, 张金, 李向南, 厍梦尧, 张劲, 李剑利, 史真, 有机化学, 2013, 33, 423.)
[2] Palani, T.; Appaswami, L.; Pirama, N. A. Tetrahedron Lett. 2010, 51, 2813.
[3] De la Fuente, V.; Fleury-Bregeot, N.; Castillon, S.; Claver, C. Green Chem. 2012, 14, 2715.
[4] Karami, B.; Eskandari, K.; Ghasemi, A. Turk. J. Chem. 2012, 36, 601.
[5] Zhang, J.; Wang, X.; Yang, M. P.; Wan, K. R.; Yin, B.; Wang, Y. X.; Li, J. L.; Shi, Z. Tetrahedron Lett. 2011, 52, 1578.
[6] Mazaahir, K.; Pooman, M. Tetrahedron Lett. 2006, 47, 5029.
[7] Huang, H. W.; Ji, X. C.; Wu, W. Q.; Jiang, H. F. Adv. Synth. Catal. 2013, 355, 170.
[8] Zhou, Y.; Yan, P. F.; Li, G. M.; Chen, Z. J. Chin. J. Org. Chem. 2009, 29, 1719 (in Chinese).
(周颖, 闫鹏飞, 李光明, 陈正军, 有机化学, 2009, 29, 1719.)
[9] Zhang, Z. H.; Liu, Q. B. Prog. Chem. 2006, 18, 270 (in Chinese).
(张占辉, 刘庆彬, 化学进展, 2006, 18, 270.)
[10] Shen, S. S.; Xu, X. P.; Ji, S. J. Chin. J. Org. Chem. 2009, 29, 806 (in Chinese).
(沈舒苏, 徐小平, 纪顺俊, 有机化学, 2009, 29, 806.)
[11] Ren, Y. M.; Cai, C.; Yang, R. C. RSC Adv. 2013, 27, 7182.
[12] Abu, T. K.; Arindam, G.; Md, M. K. Tetrahedron Lett. 2012, 53, 2622.
[13] Zhang, B. Q.; Wan, C. F.; Wang, Q.; Zhang, S.; Zha, Z. G.; Wang, Z. Y. Acta Chim. Sinica 2012, 70, 2408 (in Chinese).
(张百群, 万常峰, 王强, 张帅, 查正根, 汪志勇, 化学学报, 2012, 70, 2408.)
[14] Alcaide, B.; Almendros, P.; Cabrero G.; Callejo R.; Ruiz, P. M.; Arnó, M.; Domingo, R. L. Adv. Synth. Catal. 2010, 352, 1688.
[15] Lebœuf, D.; Gandon, V.; Ciesielski, J.; Frontier, J. A. J. Am. Chem. Soc. 2012, 134, 6296.
[16] Wang, G.; Cai, W. F.; Li, L. C.; Tian, A. M. Sci. China Chem. 2013, 43, 185 (in Chinese).
(王刚, 蔡皖飞, 李来才, 田安民, 中国科学: 化学, 2013, 43, 185.)
[17] Wang, G.; Bai, K. K.; Li, L. C.; Tian, A. M. Sci. China Chem. 2013, 44, 334 (in Chinese).
(王刚, 白坤坤, 李来才, 田安民, 中国科学: 化学, 2013, 44, 334.)
[18] McKeown, B. A.; Gonzalez, H. E.; Friedfeld, M. R.; Gunnoe, T. B.; Cundari, T. R.; Sabat, M. J. Am. Chem. Soc. 2011, 133, 19131.
[19] Yuan, Q. L.; Zhou, X. T.; Ji, H. B. Catal. Commun. 2010, 12, 202.
[20] Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
[21] Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200.
[22] Reed, A. E.; Weinhold, F.; Curtiss, L. A.; Pochatko, D. J. J. Chem. Phys. 1986, 84, 5687.
[23] Bader, R. W. F. Atoms in Molecules, A Quantum Theory, Oxford University Press, Oxford, 1990.
[24] Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995.
[25] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. J. A; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand. J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.
/
〈 |
|
〉 |