Reviews

Synthesis of Indole Derivatives via Domino Reactions

  • Feng Yadong ,
  • Zhang Hong ,
  • Cheng Guolin ,
  • Cui Xiuling
Expand
  • Engineering Research Center of Molecular Medicine, Ministry of Education, Xiamen Key Laboratory of Marine and Gene Drugs, Institutes of Molecular Medicine, Huaqiao University, Xiamen 361021

Received date: 2014-03-06

  Revised date: 2014-05-04

  Online published: 2014-05-23

Supported by

Project supported by the Minjiang Scholar Program (No. 10BS216), the Xiamen Southern Oceanographic Center (No. 13GYY003NF16), and the Fundamental Research Funds of Huaqiao University

Abstract

Domino reactions have received great attentions of organic chemist as an efficient protocol to synthesize indole derivatives. In this process, it is not required isolating or purifying the intermediates, changing the reaction condition and adding reagents. Transition metal-catalyzed domino reactions to synthesize indole derivatives have already been widely studied and become a powerful tool. In this paper, the progress of recent domino reactions applied to construct indole and its derivatives is reviewed, focusing on the transition metal-catalyzed domino reactions, and detailed analysis on the versatility and applications.

Cite this article

Feng Yadong , Zhang Hong , Cheng Guolin , Cui Xiuling . Synthesis of Indole Derivatives via Domino Reactions[J]. Chinese Journal of Organic Chemistry, 2014 , 34(8) : 1499 -1508 . DOI: 10.6023/cjoc201403015

References

[1] Sundberg, R. J. Indoles, Academic Press, London, 1996, pp. 12~15.

[2] Joule, J. A.; Thomas, E. J. Sci. Synth. 2001, 361.

[3] Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893.

[4] Fischer, E.; Jourdan, F. Ber 1883, 16, 2241.

[5] Mori, M.; Chiba, K.; Ban, Y. Tetrahedron Lett. 1977, 1, 1037.

[6] Hemetsberger, H.; Knittel, D.; Weidmann, H. Monatsh. Chem. 1970, 101, 161.

[7] Aold, K.; Peat, A. J.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 3068.

[8] Sundberg, R. J.; Lin, L. S.; Blackburn, D. E. J. Heterocycl. Chem. 1969, 6, 441.

[9] Ketcha, D. M.; Wilson, L. J.; Portlock, D. E. Tetrahedron Lett. 2000, 41, 6253.

[10] Larock, R. C.; Yum, E. K.; Refvik, M. D. J. Org. Chem. 1998, 63, 7652.

[11] Li, S.; Han, J.; L, A. Acta Chim. Sinica 2013, 71, 295 (in Chinese).

(李森, 韩静, 李昂, 化学学报, 2013, 71, 295.)

[12] (a) Zuo, Z. Z.; Xie, W. Q.; Ma, D. W. J. Am. Chem. Soc. 2010, 132, 13226.

(b) Zuo, Z. W.; Ma, D. W. Angew. Chem., Int. Ed. 2011, 50, 12008.

(c) Zi, W. W.; Xie, W. Q.; Ma, D. W. J. Am. Chem. Soc. 2012, 134, 9126.

[13] Zhang, D.; Qin, Y. Acta Chim. Sinica 2013, 71, 147 (in Chinese).

(张丹, 秦勇, 化学学报, 2013, 71, 147.)

[14] Qiu, H.; Zhang, D.; Liu, S. Y.; Qiu, L.; Zhou, J.; Qian, Y.; Zhai, C. W.; Hu, W. H. Acta Chim. Sinica 2012, 70, 2484 (in Chinese).

(邱晃, 张丹, 刘顺英, 邱林, 周俊, 钱宇, 翟昌伟, 胡文浩, 化学学报, 2012, 70, 2484.)

[15] Tietze, L. F. Chem. Rev. 1996, 96(1), 115.

[16] Tietze, L. F.; Brasche, G.; Gericke, K. M. Dmino Reactions in Organic Synthesis, Weinheim, Wiley-VCH, 2006, pp. 25~30.

[17] Wender, P. A.; Miller, B. L. Nature 2009, 460(7252), 197.

[18] Battistuzzi, G.; Cacchi, S.; Fabrizi, G. Eur. J. Org. Chem. 2002, 16, 2671.

[19] Barluenga, J.; Jimenez-Aquino, A.; Valdes, C.; Aznar, F. Angew. Chem., Int. Ed. 2007, 46, 1529.

[20] Barluenga, J.; Jimenez-Aquino, A.; Aznar, F.; Valdes, C. J. Am. Chem. Soc. 2009, 131, 4031.

[21] Jensen, T.; Pedersen, H., Bang-Andersen, B.; Madsen, R.; Jørgensen, M. Angew. Chem., Int. Ed. 2008, 47, 888.

[22] Wurtz, S.; Rakshit, S.; Neumann, J.; Droge, T.; Glorius, F. Angew. Chem., Int. Ed. 2008, 47, 7230.

[23] Shi, Z. Z.; Zhang, C.; Li, S.; Pan, D. L.; Ding, S. T.; Cui, Y. X.; Jiao, N. Angew. Chem., Int. Ed. 2009, 48, 4572.

[24] Romagnoli, R.; Baraldi, P. G.; Sarkar, T.; Carrion, M. D.; Cara, C. L.; Preti, D.; Tabrizi, M. A.; Tolomeo, M.; Grimaudo, S.; Zonta, N.; Balzarini, J.; Brancale, A.; Hsieh, H.-P.; Hamel, E. J. Med. Chem. 2008, 51, 1464.

[25] Mahboobi, S.; Pongratz, H.; Hufsky, H.; Hockemeyer, J.; Frieser, M.; Lyssenko, A.; Paper, D. H.; Burgermeister, J.; Bohmer, F.-D.; Fiebig, H.-H.; Burger, A. M.; Baasner, S.; Beckers, T. J. Med. Chem. 2001, 44, 4535.

[26] Arthuis, M.; Pontikis, R.; Florent, C. Org. Lett. 2009, 11, 4608.

[27] Mao, H.; Wan, J. P.; Pan, Y. J.; Sun, C. R. Tetrahedron Lett. 2010, 51, 1844.

[28] Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009.

[29] Catellani, M.; Motti, E.; Della, C. N. Acc. Chem. Res. 2008, 41, 1512.

[30] Candito, D. A.; Lautens, M. Org. Lett. 2010, 12, 3312.

[31] Faccini, F.; Motti, E.; Catellani, M. J. Am. Chem. Soc. 2004, 126, 78.

[32] Hassner, A.; Bunnell, C. A.; Haltiwanger, K. J. J. Org. Chem. 1978, 43, 57.

[33] Shen, J. H.; Cheng, G. L.; Cui, X. L. Prog. Chem. 2012, 24, 1324 (in Chinese).

(沈金海, 程国林, 崔秀灵, 化学进展, 2012, 24, 1324.)

[34] Wang, Y.; Wang, H.; Peng, J.; Zhu, Q. Org. Lett. 2011, 13, 4604.

[35] Nanjo, T.; Tsukano, C.; Takemoto, Y. Org. Lett. 2012, 14, 4270.

[36] Piou, T.; Neuville, L.; Zhu, J. P. Tetrahedron 2013, 69, 4415.

[37] Fernandez, L. S.; Buchanan, M. S.; Carroll, A. R.; Feng, Y. J.; Quinn, R. J.; Avery, V. M. Org. Lett. 2009, 11, 329.

[38] Yokoyama, Y.; Matsumoto, T.; Murakami, Y. J. Org. Chem. 1995, 60, 1486.

[39] Tan, B.; Torres, G. H.; Barbas, C. F. J. Am. Chem. Soc. 2011, 133, 12354.

[40] Love, B. E.; Raje, P. S. Synlett 1995, 1061.

[41] Zhang, Y. H.; Liu, S.; Yu, W. W.; Hu, M.; Zhang, G. L.; Yu, Y. P. Tetrahedron 2013, 69, 2070.

[42] Xu, C.; Murugan, V. K.; Pullarkat, S. A. Org. Biomol. Chem. 2012, 10, 3875.

[43] Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett. 1965, 6(49), 4387.

[44] Bandini, M.; Melloni. A.; Ronchi, A. U. Angew. Chem., Int. Ed. 2004, 43, 550.

[45] Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054.

[46] Li, J. H.; Tang, B. X.; Tao, L. M.; Xie, Y. X.; Liang, Y.; Zhang, M. B. J. Org. Chem. 2006, 71, 7488.

[47] Altman, R. A.; Buchwald, S. L. Org. Lett. 2006, 8, 2779.

[48] Chen, Y.; Xie, X. A.; Ma, D. W. J. Org. Chem. 2007, 72, 9329.

[49] Ali, M. A.; Punniyamurthy, T. Synlett 2011, 623.

[50] Xia, Z. M.; Wang, K.; Zheng, J. N.; Ma, Z. Y.; Jiang, Z. J.; Wang, X. X.; Lv, X. Org. Biomol. Chem. 2012, 10, 1602.

[51] Ma, S.; Cai, Q. Acc. Chem. Res. 2008, 41, 1451.

[52] Oda, Y.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2012, 14, 664.

[53] Salzner, U.; Lagowski, J. B.; Pickup, P. G.; Poirier, R. A. Synth. Met. 1998, 96, 177.

[54] Park, J.; Park, E.; Kim, A.; Park, S. A.; Lee, Y.; Chi, K. W.; Jung, Y. H.; Kim, I. S. J. Org. Chem. 2011, 76, 2214.

[55] Ponpandian, T.; Muthusubramanian, S. Tetrahedron Lett. 2012, 53, 4248.

[56] Ambrogio, I.; Arcadi, A.; Cacchi, S.; Fabrizi, G.; Marinelli, F. Synlett 2007, 1775.

[57] Praveen, C.; Karthikeyan, K.; Perumal, P. T. Tetrahedron 2009, 65, 9244.

[58] Chang, H. O.; Karmakar, S.; Park, H.; Ahn, Y.; Kim, J. W. J. Am. Chem. Soc. 2010, 132, 1792.

[59] Stuart, D. R.; Bertrand-Laperle, M.; Burgess, K. M. N.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 16474.

[60] Boyer, A.; Isono, N.; Lackner, S.; Lautens, M. Tetrahedron 2010, 66, 6468.

[61] Schonhaber, J.; Frank, W.; Muller, T. J. J. Org. Lett. 2010, 12, 4122.

[62] Reddy, B. V. S.; Swain, M.; Reddy, S. M.; Yadav, J. S.; Sridhar, B. J. Org. Chem. 2012, 77, 11355.

[63] Cui, S. L.; Wang, J.; Wang, Y. G. J. Am. Chem. Soc. 2008, 130, 13526.

[64] Jiang, B.; Li, Q. Y.; Tu, S. J.; Li, G. G. Org. Lett. 2012, 14, 5210.

Outlines

/