Chinese Journal of Organic Chemistry >
Analysis of Reaction Products of Lysozyme under the Explosion Condition by Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry
Received date: 2014-04-15
Revised date: 2014-05-26
Online published: 2014-06-11
Supported by
Project supported by the Open Project of Shanghai Institute of Forensic Science (No. 2012XCWZK07) and the National Natural Science Foundation of China (Nos. 21202192, 21275155).
Identification and determination of explosives and explosive residues were a subject of continuing strong interest in analytical chemistry and forensic science. In this paper, the reaction products of lysozyme under the explosion condition were analyzed by a MALDI-TOFMS (Matrix-assisted laser desorption ionization time-of-flight mass spectrometry) method. There was no difference in the tryptic digest between the normal lysozyme and the reaction products generated by detonator, while some adduct peaks such as [MH+17]+, [MH+18]+, [MH+28]+, [MH+32]+, and [MH+44]+ were discovered in the explosives. This may be attributed to the reaction between the lysozyme and the active small molecule gases such as NH3, H2O, CO/N2, O2, CO2, which were generated during the explosion. Characteristic peaks which were produced by lysozyme and the active small molecule gases from different explosives can be used to discriminate the six explosives. For example, H2O molecules which were generated during the exploration by tri-nitrotoluene (TNT) can specifically react with VFGRCELAAAMKRHGLDNYR (m/z 2307) to produce a characteristic peak at m/z 2325 (2307+18). Also, H2O molecules which were generated by hexahydro-1,3,5-trinitroazine (RDX) can completely react with IVSDGNGMNAWVAWRNRCK (m/z 2177) to produce a characteristic peak at m/z (2177+18). Characteristic peak at m/z 1301 was produced by GYSLGNWVCAAK (m/z 1269) and O2 molecules for the identification of pentaerythritol tetranitrate (PETN). While for black powder, O2 and H2O can both react with IVSDGNGMNAWVAWR (m/z 1676) to produce product ions peaks at m/z 1694 and 1708. However, only the O2 molecules can react with IVSDGNGMNAWVAWR for pyrotechnic composition. As for ammon explosive, which is a mixture of inorganic explosives and organic explosives, CO2 molecules can react with a plurality of reaction sites of lysozyme to produce a series of characteristic peaks signals such as m/z 1313 (1269+44), 1720 (1676+44), 1848 (1804+44), 2722 (2678+44).
Key words: explosive; MALDI-TOFMS; TNT; RDX; PETN; black powder; pyrotechnic composition; ammon explosive
Liu Suhong , Xia Pan , Zhang Chenggong , Zhang Li , Guo Yinlong . Analysis of Reaction Products of Lysozyme under the Explosion Condition by Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry[J]. Chinese Journal of Organic Chemistry, 2014 , 34(10) : 2135 -2139 . DOI: 10.6023/cjoc201404025
[1] Detata, D. A.; Collins, P. A.; McKinley, A. J. J. Forensic. Sci. 2013, 58, 500.
[2] Perret, D.; Marchese, S.; Gentili, A. Chromatographa 2008, 68, 517.
[3] MacCrehan, W.; Moore, S.; Hancock, D. Anal. Chem. 2011, 83, 9054.
[4] Liu, J.; Severt, S. A.; Pan, X.; Smith, P. N.; McMurry, S. T.; Cobb, G. P. Talanta 2007, 71, 627.
[5] Tian, F. F.; Yu, J.; Hu, J, H.; Zhang, Y.; Xie, M. X.; Liu, Y.; Wang, X. F.; Liu, H. L.; Han, J. J. Chromatogr. A 2011, 1218, 3521.
[6] Burleson, G. L.; Gonzalez, B.; Simons, K.; Yu, J. C. J. Chromatogr. A 2009, 1216, 4679.
[7] Joshi, M.; Rigsby, K.; Almirall, J. R. Forensic. Sci. Int. 2011, 208, 29.
[8] Lin, H. L.; Zhu, X. H.; Fu, Q.; Xu, X. S. Forensic. Sci. Technol. 2009, (3), 37 (in Chinese).
(林宏亮, 朱晓红, 付强, 徐雪松, 刑事技术, 2009, (3), 37.)
[9] Sarazin, C.; Delaunay, N.; Costanza, C.; Eudes, V.; Gareil, P. Talanta 2013, 103, 301.
[10] Sarazin, C.; Delaunay, N.; Costanza, C.; Eudes, V.; Gareil, P. Electrophoresis 2011, 32, 1282.
[11] Gilchrist, E.; Smith, N.; Barron, L. Analyst 2012, 137, 1576.
[12] Johns, C.; Shellie, R. A.; Potter, O. G.; O'Reilly, J. W.; Hutchinson, J. P.; Guijt, R. M.; Breadmore, M. C.; Hilder, E. F.; Dicinoski, G. W.; Haddad, P. R. J. Chromatogr. A 2008, 1182, 205.
[13] Tyrrell, E.; Dicinoski, G. W.; Hilder, E. F.; Shellie, R. A.; Breadmore, M. C.; Pohl, C.A.; Addad, P. R. J. Chromatogr. A 2011, 1218, 3007.
[14] Meng, H. B.; Wang, T. R.; Guo, B. Y.; Hashi, Y.; Guo, C. X.; Lin, J. M. Talanta 2008, 76, 241.
[15] Xie, P.; Xu. J.; Hu, Z.; El-Sepai, F.; Peimin, Z.; Zhu, Y. J. Chromatogr. Sci. 2011, 49,622.
[16] Swider, J. R. J. Forensic Sci. 2013, 58, 1601.
[17] Rowell, F.; Seviour, J.; Lim, A. Y; Elumbaring-Salazar, C. G.; Loke, J.; Ma, J. Forensic Sci. Int. 2012, 221, 84.
[18] Cheng, Y. L.; Zhang, G. Y.; Li, C.; Lin, J. Oncol. Lett. 2013, 6, 1222.
[19] Liu, J.; Jiang, T.; Wei, L.; Yang, X.; Wang, C.; Zhang, X.; Xu, D.; Chen, Z.; Yang, F.; Li, J. C. BMC Infect. Dis. 2013, 13, 506.
[20] Valero-Galván, J.; González-Fernández, R.; Navarro-Cerrillo, R. M.; Gil-Pelegrín, E.; Jorrín-Novo, J. V. J. Proteome Res. 2013, 12, 5110.
[21] Fang, F.; Liu, P.; Wang, H. Y.; Zhang, L.; Zhang, J.; Gao, Y. P.; Zeng, L. M.; Guo, Y. L. Rapid Commun. Mass Spectrom. 2009, 23, 1703.
[22] Wang, J.; Zhou, Y.; Xu, M.; Rang, R.; Guo, Y. L.; Zhu, T. Y. Transplant. Proc. 2011, 43, 3738.
[23] Holst, S.; Stavenhagen, K.; Balog, C. I.; Koeleman, C. A.; McDonnell, L. M.; Mayboroda, O. A.; Verhoeven, A.; Mesker, W. E.; Tollenaar, R. A.; Deelder, A. M.; Wuhrer, M. Mol. Cell. Proteomics 2013, 12, 3081.
[24] Lu, J. J.; Tsai, F. J.; Ho, C. M.; Liu, Y. C.; Che, C. J. Anal. Chem. 2012, 84, 5685.
[25] Leng, J. P.; Zhu, D.; Wu, D. J.; Zhu, T. Y.; Zhao, N. W.; Guo, Y. L. Rapid Commun. Mass Spectrom. 2012, 26, 2555.
[26] Hong, S. M.; Tanaka, M.; Yoshii, S.; Mine, Y.; Matsui, T. Anal. Chem. 2013, 85,10033.
[27] Yu, C. T.; Guo, Y. L.; Zhang, Z. J.; Xiang, B. R. Chin. J. Org. Chem. 2000, 20, 629 (in Chinese).
(余翀天, 郭寅龙, 张尊建, 相秉仁, 有机化学, 2000, 20, 629.)
[28] Yu, C. T.; Guo, Y. L.; Zhang, Z. J.; Xiang, B. R.; An, D. K. Acta Chim. Sinica 2001, 59, 615 (in Chinese).
(余翀天, 郭寅龙, 张尊建, 相秉仁, 安登魁, 化学学报, 2001, 59, 615.)
[29] Fang, F.; Zhang, J.; Zhang, L.; Guo, Y. L. Chin. J. Chem. 2009, 27, 2397.
[30] Zhu, L.; Zhang, J.; Ren, S. F.; Guo, Y. L. Int. J. Mass. Spectrom. 2013, 34, 323.
[31] Zhu, L.; Zhang, J.; Guo, Y. L. J. Proteomics 2014, 96, 360.
/
〈 |
|
〉 |