Chinese Journal of Organic Chemistry >
Cyclic(alkyl)(amino)carbenes and the Research Prospect in Olefin Metathesis Reaction
Received date: 2014-04-17
Revised date: 2014-05-21
Online published: 2014-06-11
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21172027, 21303128).
Olefin metathesis has been one of the most important methods to construct carbon-carbon double bonds, which has been enabled by development of well-defined transition-metal catalysts (e.g. [L2X2Ru=CHR], L=PCy3). A significant gain to increase the catalyst stability and activity was achieved after replacing a single PCy3 ligand of L2X2Ru=CHR (L=PCy3) with cyclic biamino cabene, such as 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene (H2IMes). In 2005, Bertrand et al. discovered a novel ligand-yclic(alkyl)(amino)cabene (CAAC), which displayed more electron donating and more electrophilic in comparison with cyclic diamino cabene. It is logic that more electronegative amino group is replaced by alkyl group in CAAC. Furthermore, a quaternary carbon at the α position of carbene center of CAAC may make a big difference from cyclic diamino cabene, which can change the steric environment of CAAC easily and creat a chiral center next to the carbene. In this research prospect, synthesis, property and application of CAACs in olefin metathesis catalysis are introduced. Finally, the issues remained in this research area are summarized and an outlook for the development in the future is given.
Key words: olefin metathesis; catalyst; ruthenium; carbine
Cai Yuan , Kai Cheng , Huang Yiyong , Francis Verpoort . Cyclic(alkyl)(amino)carbenes and the Research Prospect in Olefin Metathesis Reaction[J]. Chinese Journal of Organic Chemistry, 2014 , 34(10) : 1978 -1985 . DOI: 10.6023/cjoc201404032
[1] (a) Vougioukalakis, G. C.; Grubbs, R. H. Chem. Rev. 2010, 110, 1746.
(b) Luo, Z.-B.; Dai, L.-X. Chin. J. Nat. 2005, 127, 6326 (in Chinese).
(罗治斌, 戴立信, 自然杂志, 2005, 127, 6326.)
(c) Yang, X.-X.; Zhang, Y.; Shao, Z.-Y. Chin. J. Org. Chem. 2010, 30, 968 (in Chinese).
(杨晓霞, 张勇, 邵志宇, 有机化学, 2010, 30, 968.)
[2] Herisson, J. L.; Chauvin, Y. Macromol. Chem. 1971, 141, 161.
[3] Schrock, R. R.; Murdzek, J. S.; Bazan, G. C.; Robbins, J.; DiMare, M.; O'Regan, M. B. J. Am. Chem. Soc. 1990, 112, 3875.
[4] Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem., Int. Ed. 1995, 34, 2039.
[5] Dias, E. L.; Nguyen, S. T.; Grubbs, R. H. J. Am. Chem. Soc. 1997, 119, 3887.
[6] Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953.
[7] Sanford, M. S.; Love, J.; Grubbs, R. H. J. Am. Chem. Soc. 2001, 123, 6543.
[8] Lavallo, V.; Canac, Y.; Prasang, C.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2005, 44, 5705.
[9] Lavallo, V.; Canac, Y.; Dehope, A.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2005, 44, 7236.
[10] Cattoën, X.; Solë, S.; Pradel, C.; Gornitzka, H.; Miqueu, K.; Bourissou, D.; Bertrand, G. J. Org. Chem. 2003, 68, 911.
[11] Lavallo, V.; Mafhouz, J.; Canac, Y.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. J. Am. Chem. Soc. 2004, 126, 8670.
[12] Lavallo, V.; Canac, Y.; Dehope, A.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2007, 46, 2899.
[13] Schlummer, B.; Hartwig, J. F. Org. Lett. 2002, 4, 1471.
[14] (a) Lavallo, V.; Canac, Y.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. Angew. Chem., Int. Ed. 2006, 45, 3448.
(b) Frey, G. D.; Lavallo, V.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. Science 2007, 316, 439.
[15] (a) Dixon, D. A.; Arduengo, A. J.; Dobbs, K. D.; Khasnis, D. V. Tetrahedron Lett. 1995, 36, 645.
(b) Denk, M. K.; Rodezno, J. M.; Gupta, S.; Lough, A. J. J. Organomet. Chem. 2001, 617, 242.
(c) Herrmann, W. A.; Elison, M.; Fischer, J.; Köcher, C.; Artus, G. R. Chem. Eur. J. 1996, 2, 772.
[16] Chianese, A. R.; Kovacevic, A.; Zeglis, B. M.; Faller, J. W.; Crabtree, R. H. Organometallics 2004, 23, 2461.
[17] Canepa, G.; Brandt, C. D.; Werner, H. Organometallics 2004, 23, 1140.
[18] (a) Prinson, P.; Kartik, S.; Mondal, C.; Herbert, W.; Roesky, M. H.; Frenking, G.; Demeshko, S.; Meyer, A. F.; Jonathan, C. S.; Christian, H.; Dalal, N. S.; Ungur, L.; Chibotaru, L. F.; Kevin, P.; Meents, A.; Dittrich, B. Angew. Chem., Int. Ed. 2013, 52, 11817.
(b) Li, Y.; Mondal, K. C.; Roesky, H. W.; Zhu, H.-P.; Peter, S. J. Am. Chem. Soc. 2013, 135, 12422.
(c) Mondal, K. C.; Samuel, P. P.; Roesky, H. W.; Regine, E. C.; Irmer, H.; Dietmar, S.; Brigitte, S.; Kaim, W.; Ungur, L.; Chibotaru, L. F.; Hermann, M.; Frenking, G. J. Am. Chem. Soc. 2014, 136, 1770.
(d) Guido, D.; Rian, F.; Dewhurst, D.; Kousar, S.; Donnadieu, B.; Bertrand, G. J. Org. Chem. 2008, 693, 1674.
[19] Leuthauber, S.; Schwarz, D.; Plenio, H. Chem. Eur. J. 2007, 13, 7195.
[20] Denk, K.; Sirsch, P.; Herrmann, W. A. J. Organomet. Chem. 2002, 649, 219.
[21] Delaude, L.; Demonceau, A.; Wouters, J. Eur. J. Inorg. Chem. 2009, 13, 1882.
[22] Kuchenbeiser, G.; Soleilhavoup, M.; Donnadieu, B.; Bertrand, G. Chem. Asian J. 2009, 11, 1745.
[23] Tudose, A.; Demonceau, A.; Delaude, L. J. Organomet. Chem. 2006, 691, 5356.
[24] Altenhoff, G.; Goddard, R.; Lehmann, C. W.; Glorius, F. J. Am. Chem. Soc. 2004, 126, 15195.
[25] Huang, H.-J.; Schanz, E. D.; Nolan, S. P. Organometallics 1999, 18, 2370.
[26] McGuinness, D. S.; Cavell, K. J.; Skeleton, B. W.; White, A. H. Organometallics 1999, 18, 1596.
[27] Straub, B. Adv. Synth. Cat. 2007, 349, 204.
[28] Anderson, D. R.; Lavallo, V.; O'Leary, D. J.; Bertrand, G.; Grubbs, R. H. Angew. Chem., Int. Ed. 2007, 46, 7262.
[29] Sanford, M. S.; Love, J. A.; Grubbs, R. H. Organometallics 2001, 20, 5314.
[30] Ritter, T.; Hejl, A.; Wenzel, A. G.; Funk, T. W.; Grubbs, R. H. Organometallics 2006, 25, 5740.
[31] Hejl, A. Ph.D. Dissertation, California Institute of Technology, Pasadena, CA (USA), 2007.
[32] Grubbs, R. H. Handbook of Metathesis, Vol. 2, Wiley-VCH, Weinheim, Germany, 2003, p. 247.
[33] Deshmukh, P. H.; Blechert, S. Dalton Trans. 2007, 2479.
[34] Anderson, D. R.; Ung, T.; Mkrtumyan, G.; Bertrand, G.; Grubbs, R. H.; Schrodi, Y. Organometallics 2008, 27, 563.
[35] Zhang, J.; Song, S.-F.; Wang, X.; Jiao, J.-J.; Shi, M. Chem. Commun. 2013, 49, 9491.
[36] Broggi, J.; Urbina-Blanco, C. A.; Clavier, H.; Leitgeb, A.; Slugovc, C.; Alexandra, M.; Slawin, Z.; Nolan, S. P. Chem. Eur. J. 2010, 16, 9215.
[37] Anderson, D. R. Ph.D. Dissertation, California Institute of Technology, California, 2008.
[38] Lloyd-Jones, G. C.; Alder, R. W.; Owen-Smith, G. J. J. Chem. Eur. J. 2006, 12, 5361.
[39] Slugovc, C.; Burtscher, D.; Stelzer, F.; Mereiter, K. Organometallics 2005, 24, 2255.
[40] Monsaert, S.; Canck, E. D.; Drozdzak, R.; DerVoort, P. V.; Verpoort, F.; Martins, J. C.; Pieter, M. S. Eur. J. Org. Chem. 2009, 655.
[41] Lehman, S. E.; Wagener, K. B.; Akvan, S. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 6134.
[42] Kabro, A.; Roisnel, T.; Fischmeister, C.; Bruneau, C. Chem. Eur. J. 2010, 16, 12255.
[43] Nakafuji, S.; Kobayashi, J.; Kawashima, T. Angew. Chem., Int. Ed. 2008, 47, 1141.
[44] Zeng, X.-M.; Frey, G. D.; Kinjo, R.; Donnadieu, B.; Bertrand, G. J. Am. Chem. Soc. 2009, 131, 8690.
/
〈 |
|
〉 |