Chinese Journal of Organic Chemistry >
A Review on Catalyzed Dimerization of Acrylonitrile
Received date: 2014-05-04
Revised date: 2014-05-21
Online published: 2014-06-11
Supported by
Project supported by the National Natural Science Fundation of China (No. 21202141), the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Opening Foundation of the Key Laboratory of Environmental Materials and Engineering of Jiangsu Province (Nos. K100027, K090030) and the Opening Foundation of the Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University (No. 2010GDGP0106).
Acrylonitrile (AN) is a cheap and accessible industrial material. Linear dimerization of acrylonitrile affords the skeleton of adiponitrile, which leads to hexamethylene diamine through further hydrogenation. Hexamethylene diamine is an important industrial intermediate with comprehensive applications and wide market requirement and is mainly applied in the synthesis of nylon 66. Therefore, linear dimerization of acrylonitrile is a very important organic reaction. Compared with the electrolytic process which has already been applied in industrial production, the catalyzed dimerization needs low energy consumption and low equipment requirements. Besides, the catalyzed dimerization of acrylonitrile may also afford the branched dimer 2-methyleneglutaronitrile, which is the important intermediate in the synthesis of bromothalonil. Although the market requirement of bromothalonil is not as huge as nylon 66, it is also one of the important chemical industrial products. However, currently, there was no systematic review on AN dimerization. Therefore, this review aims to reorganize and systematically describe the advances of catalyzed dimerization of acrylonitrile for reference of the related technicians in China, including the Ru-catalyzed dimerization, other metal-catalyzed dimerization and phosphorus-catalyzed dimerization.
Key words: acrylonitrile; dimerization; catalysis; adiponitrile; hexamethylene diamine; polymer; nylon 66; bromothalonil
Yu Lei , Wang Jun , Cao Hongen , Ding Kehong , Xu Qing . A Review on Catalyzed Dimerization of Acrylonitrile[J]. Chinese Journal of Organic Chemistry, 2014 , 34(10) : 1986 -1991 . DOI: 10.6023/cjoc201405004
[1] Chem. Word 1963, 458 (in Chinese).
(化学世界, 1963, 458.)
[2] Ciganek, E. Org. React. 1997, 51, 340.
[3] http://www.mining120.com/show/1312/ 20131220_130710.html
[4] Misono, A.; Uchida, Y.; Hidai, M.; Kanai, H. Chem. Commun. 1967, 357.
[5] Dewhirst, K. C. Inorg. Chem. 1966, 5, 319.
[6] Massey, A. G. J. Inorg. Nuclear Chem. 1962, 24, 1172.
[7] Misono, A.; Uchida, Y.; Hidai, M. Bull. Chem. Soc. Jpn. 1968, 41, 396.
[8] Misono, A.; Uchida, Y.; Hidai, M.; Inomata, I. Chem. Commun. 1968, 704.
[9] McClure, J. D.; Owyang, R.; Slaugh, L. H. J. Organomet. Chem. 1968, 12, P8.
[10] Hallman, P. S.; Evans, D.; Osborn, J. A.; Wilkinson, G. Chem. Commun. 1967, 305
[11] Tsou, D. T.; Burrington, J. D.; Maher, E. A.; Grasselli, R. K. J. Mol. Catal. 1983, 22, 29.
[12] As shown in Scheme 2, one of the H atom on the methylene came from hydrogen.
[13] Tsou, D. T.; Burrington, J. D.; Maher, E. A.; Grasselli, R. K. J. Mol. Catal. 1985, 30, 219.
[14] Fukuoka, A.; Nagano, T.; Furuta, S.; Yoshizawa, M.; Hirano, M.; Komiya, S. Bull. Chem. Soc. Jpn. 1998, 71, 1409.
[15] Kashiwagi, K.; Sugise, R.; Shimakawa, T.; Matuura, T.; Shirai, M.; Kakiuchi, F.; Murai, S. Organometallics 1997, 16, 2233.
[16] Kashiwagi, K.; Sugise, R.; Shimakawa, T.; Matuura, T.; Shirai, M. Chem. Lett. 2006, 35, 186.
[17] Kashiwagi, K.; Sugise, R.; Shimakawa, T.; Matuura, T. Chem. Lett. 2007, 36, 1384
[18] Kashiwagi, K.; Sugise, R.; Shimakawa, T.; Matuura, T.; Shirai, M. J. Mol. Catal. A: Chem. 2007, 264, 9.
[19] Kashiwagi, K.; Sugise, R.; Shimakawa, T.; Matuura, T.; Shirai, M. J. Mol. Catal. A: Chem. 2008, 286, 120.
[20] (a) Komiya, S.; Fukuoka, A.; Hirano, M. JP 09286769, 1997 [Chem. Abstr. 1997, 128, 3449].
(b) Suzuki, Y.; Kiso, Y. JP 9504307, 1997 [Chem. Abstr. 1997, 126, 157193].
(c) Murai, S.; Oodan, K.; Sugise, R.; Shirai, M.; Shimakawa, T. JP 06009531, 1994 [Chem. Abstr. 1994, 120, 191146].
[21] Sugise, R.; Shirai, M.; Shimakawa, T.; Kashiwagi, K. JP 05286918, 1993 [Chem. Abstr. 1994, 120, 54210].
[22] Angès, G.; Chiusoli, G. P.; Cometti, G. Chem. Commun. 1968, 1515.
[23] Saegusa, T.; Ito, Y.; Kinoshita, H.; Tomita, S. Bull. Chem. Soc. Jpn. 1970, 43, 877.
[24] Watanabe, Y.; Takeda, M. Bull. Chem. Soc. Jpn. 1973, 46, 883.
[25] Nomura, K.; Ishino, M. J. Mol. Catal. 1992, 73, L15.
[26] For reviews see: (a) Xie, P.-Z.; Huang, Y. Eur. J. Org. Chem. 2013, 6213.
(b) Xu, S.-L.; He, Z.-J. RSC Adv. 2013, 3, 16885.
(c) Wang, Y.-R.; Pan, J.-J.; Chen, Z.-D.; Sun, X.-Q.; Wang, Z.-M. Mini-Rev. Med. Chem. 2013, 13, 836.
(d) Wang, Z.-M.; Kwon, O. In Basics and Applications in Organic Synthesis, Drug Discovery, and Chemical Biology, Ed.: Trabocchi, A., Wiley-VCH, Hoboken, 2013, p. 97.
(e) Xu, S.-L.; He, Z.-J. Chin. J. Org. Chem. 2012, 32, 1159 (in Chinese).
(徐四龙, 贺峥杰, 有机化学, 2012, 32, 1159.)
(f) Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035.
[27] Selected recent articles: (a) Zheng, S.-Q.; Lu, X.-Y. Org. Lett. 2008, 10, 4481.
(b) Lu, Z.; Zheng, S.-Q.; Zhang, X.-M.; Lu, X.-Y. Org. Lett. 2008, 10, 3267.
(c) Tian, J.-J.; Zhou, R.; Sun, H.-Y.; Song, H.-B.; He, Z.-J. J. Org. Chem. 2011, 76, 2374.
(d) Zhou, R.; Wang, J.-F.; Song, H.-B.; He, Z.-J. Org. Lett. 2011, 13, 580.
(e) Cruz, D.; Wang, Z.-M.; Kibbie, J.; Modlin, R.; Kwon, O. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 6769.
(f) Wang, Z.-M.; Castellano, S.; Kinderman, S. S.; Argueta, C. E.; Beshir, A. B.; Fenteany, G.; Kwon, O. Chem. Eur. J. 2011, 17, 649.
(g) Zhou, R.; Wang, J.-F.; Duan, C.; He, Z.-J. Org. Lett. 2012, 14, 6134.
(h) Zhou, R.; Wang, J.-F.; Tian, J.-J.; He, Z.-J. Org. Bioorg. Chem. 2012, 10, 773.
(i) Zheng, J.; Huang, Y.; Li, Z.-M. Org. Lett. 2013, 15, 5064.
(j) Hu, C.-C.; Zhang, Q.-L.; Huang, Y. Chem. Asian J. 2013, 8, 1981.
(k) Li, E.-Q.; Huang, Y.; Liang, L.; Xie, P.-Z. Org. Lett. 2013, 15, 3138.
(l) Zhou, R.; Wang, J.-F.; Yu, J.; He, Z.-J. J. Org. Chem. 2013, 78, 10596.
(m) Tian, J.-J.; He, Z.-J. Chem. Commun. 2013, 49, 2058.
[28] (a) McClure, J. D. J. Org. Chem. 1970, 35, 3045.
(b) McClure, J. D. US 3225083, 1965 [Chem. Abstr. 1966, 64, 103655].
[29] Jennings, J. R.; Cozens, R. J. Appl. Catal. A: Gen. 1995, 124, 297.
[30] Jennings, J. R.; Cozens, R. J.; Wade, K. Appl. Catal. A: Gen. 1995, 130, 175.
[31] Jennings, J. R.; Cozens, R. J. Appl. Catal. A: Gen. 1996, 135, 163.
[32] Yu, L.; Wang, J.; Zhang, X.; Cao, H.-E.; Wang, G.-L.; Ding, K.-H.; Xu, Q.; Lautens, M. RSC Adv. 2014, 4, 19122. (a) Charardes, P.; Grard, C.; Lafont P.; Thiers, M. FR 1366081, 1964 [Chem. Abstr. 1964, 61, 83787].
(b) Baizer, M. M.; Anderson, J. D. J. Org. Chem. 1965, 30, 1357.
(c) Jenner, G. Tetrahedron Lett. 2000, 41, 3091.
(d) Araki, Y.; Maki, T. JP 05001008, 1993 [Chem. Abstr. 1993, 118, 212465].
(e) Araki, Y.; Maki, T. JP 04368362, 1992 [Chem. Abstr. 1993, 118, 254412].
(f) Saito, M. JP 2012001521, 2012 [Chem. Abstr. 2012, 156, 122960].
(g) Ichikawa, S.; Iwane, H. JP 11180941, 1999 [Chem. Abstr. 1999, 131, 58603].
(h) Heckle, W. A., Mathews Ⅲ, M. J.; Peoples, P. R. US 4952541, 1990 [Chem. Abstr. 1990, 113, 172961].
/
〈 |
|
〉 |