Articles

Solution-Processable Star-Shaped Conjugated Molecules with Multiple p-n Branches:Synthesis and Photovoltaic Properties

  • Fan Xiaochun ,
  • Wang Fang ,
  • Li Xiangchun ,
  • Chen Yao ,
  • Lai Wenyong ,
  • Huang Wei
Expand
  • Key Laboratory for Organic Electronics & Information Displays KLOEID and Institute of Advanced Materials IAM, Nanjing University of Posts & Telecommunications, Nanjing 210023

Received date: 2014-05-10

  Revised date: 2014-06-01

  Online published: 2014-06-16

Supported by

Project supported by the National Key Basic Research Program of China (973 Program, No. 2014CB648300), the National Natural Science Foundation of China (Nos. 20904024, 51173081, 61136003, 61106036), the Natural Science Foundation of Jiangsu Province (Nos. BK20130037, BK2011760), the Ministry of Education of China (Nos. NCET-13-0872, 20133223110008, IRT1148), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Six Talent Plan (No. 2012XCL035), the Qing Lan Project of Jiangsu Province.

Abstract

Well-defined π conjugated star-shaped molecules have attracted much research interest in the field of organic electronics, due to their good monodispersity, high purity, excellent reproducibility, facile functionalization, interesting two/three-dimensional architecture and potential intriguing isotropic optoelectronic properties. Here two new p-n type star-shaped conjugated molecules, S1 and S2, with phenylcarbazole as core and benzothiodiazole derivatives as arms, were designed and synthesized. They are readily soluble in common organic solvents. The structures of the intermediates and resulting molecules were adequately confirmed by 1H NMR, 13C NMR, MALDI-TOF, and elemental analysis. S1 and S2 exhibited good thermal stability according to thermal gravimetric analysis; cyclic voltammetry revealed low-lying HOMO and LUMO energy levels as well as narrow band gaps. The HOMO/LUMO energy levels and band gaps could be facilely modulated by varying the content and sequence of p and/or n type moieties. With incorporating 3-hexylthiophene π bridge unit, S2 film shows a broad absorption band from 300 nm to 650 nm in films with absorption edge red-shifted by ca. 38 nm in comparison with that of S1. Additionally, S2 possessed amorphous properties, while S1 exhibited crystalline properties in powder. Density functional theory (DFT) calculation was also conducted to further understand the electronic properties. Solution-processed organic solar cells based on a blend of S1 and PC70BM (1:3, w/w) exhibited power conversion efficiency (PCE) of 0.34% with a short circuit current density (Jsc) of 1.5 mA/cm2 and an open circuit voltage (Voc) of 0.83 V under the illumination of AM1.5, 100 mW/cm2. Improved performance was achieved for S2 with PCE of 0.5%, Jsc of 1.85 mA/cm2, and a high Voc of 1.0 V under identical conditions.

Cite this article

Fan Xiaochun , Wang Fang , Li Xiangchun , Chen Yao , Lai Wenyong , Huang Wei . Solution-Processable Star-Shaped Conjugated Molecules with Multiple p-n Branches:Synthesis and Photovoltaic Properties[J]. Chinese Journal of Organic Chemistry, 2014 , 34(10) : 2027 -2034 . DOI: 10.6023/cjoc201405016

References

[1] (a) Lai, W.-Y.; Zhu, R.; Fan, Q.-L.; Hou, L. T.; Cao, Y.; Huang, W. Macromolecules 2006, 39, 3707.
(b) Lai, W.-Y.; Chen, Q. Q.; He, Q.-Y.; Fan, Q.-L.; Huang, W. Chem. Commun. 2006, 18, 1959.
(c) Lai, W.-Y.; He, Q.-Y.; Zhu, R.; Chen, Q. Q.; Huang, W. Adv. Funct. Mater. 2008, 18, 265.
(d) Lai, W.-Y.; Xia, R. D.; He, Q.-Y.; Levermore, P. A.; Huang, W.; Bradley, D. D. C. Adv. Mater. 2009, 21, 355.
(e) Lai, W.-Y.; Xia, R. D.; Bradley, D. D. C.; Huang, W. Chem. Eur. J. 2010, 16, 8471.
(f) Xu, W. D.; Lai, W.-Y.; Hu, Q.; Teng, X. Y.; Zhang, X. W.; Huang, W. Polym. Chem. 2014, 5, 2942.
(g) Zhao, L.; Jiu, Y.; Wang, J.; Zhang, X.; Lai, W.-Y.; Huang, W. Acta Chim. Sinica 2013, 71, 1248 (in Chinese).
(赵玲玲, 酒元达, 王建云, 张新稳, 赖文勇, 黄维, 化学学报, 2013, 71, 1248.)
[2] Schilinsky, P.; Asawapirom, U.; Scherf, U.; Biele, M.; Brabec, C. J. Chem. Mater. 2005, 17, 2175.
[3] (a) Gunes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, 1324.
(b) Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nat. Mater. 2005, 4, 864.
(c) Sun, Y.; Welch, G. C.; Leong, W.-L.; Takacs, C. J.; Bazan, G. C.; Heeger, A. J. Nat. Mater. 2011, 11, 44.
(d) Lin, Y.; Li, Y.-F.; Zhan, X.-W. Chem. Soc. Rev. 2012, 41, 4245.
(e) Li, Z. F.; Peng, Q.; He, P.; Wang, Y. L,; Hou, Q. F.; Li, B. L.; Tian, W. J. Chin. J. Org. Chem. 2012, 32, 834 (in Chinese).
(李在房, 彭强, 和平, 王艳玲, 侯秋飞, 李本林, 田文晶, 有机化学, 2012, 32, 834.)
[4] (a) He, C.; He, Q.-G.; Yang, X.-D.; Wu, G.-L.; Yang, C.-H.; Bai, F.-L.; Shuai, Z.-G. Wang, L.-X.; Li, Y.-F. J. Phys. Chem. C 2007, 111, 8661.
(b) He, C.; He, Q.-G.; Yi, Y.-P.; Wu, G.-L.; Yang, C.; Bai, F.-L.; Shuai, Z.-G.; Li, Y.-F. J. Mater. Chem. 2008, 18, 4085.
(c) Shi, Q.-Q.; Cheng, P.; Li, Y.-F.; Zhan, X.-W. Adv. Energy Mater. 2012, 2, 63.
(d) Lin, Y.-Z; Cheng, P.; Liu, Y. Shi, Q.-Q.; Hu, W.-P.; Li, Y.-F.; Zhan, X.-W. Org. Electron. 2012, 13, 673.
(e) Tamayo, A. B.; Walker, B.; Nguyen, T. Q. J. Phys. Chem. C 2008, 112, 11545.
(f) Zhang, T. H.; Pu, L. Y.; Zhao, J. L.; Xu, Z.; Yang, L.; Liu, X. Z.; Ju, S. T. Chin. J. Org. Chem. 2011, 31, 260 (in Chinese).
(张天慧, 朴玲钰, 赵谡玲, 徐征, 杨磊, 刘祥志, 鞠思婷, 有机化学, 2011, 31, 260.)
[5] (a) Yu, W.-L.; Meng, H.; Pei, J.; Huang, W. J. Am. Chem. Soc. 1998, 120, 11808.
(b) Huang, W.; Meng, H.; Yu, W.-L.; Gao, J.; Heeger, A. J. Adv. Mater. 1998, 11, 593.
(c) Yu, W.-L.; Meng, H.; Pei, J.; Huang, W.; Li, Y.; Heeger, A. J. Macromolecules 1998, 31, 4838.
(d) Huang, W.; Yu, W.-L.; Meng, H.; Pei, J.; Li, S. F. Y. Chem. Mater. 1998, 10, 3340.
(e) Roquet, S.; Cravino, A.; Leriche, P.; Alévêque, O.; Frère, P.; Roncali, J. J. Am. Chem. Soc. 2006, 128, 3459.
(f) Ripaud, E.; Rousseau, T.; Leriche, P.; Roncali, J. Adv. Energy Mater. 2011, 1, 540.
(g) Walker, B.; Tomayo, A. B.; Dang, X. D.; Zalar, P.; Seo, J. H.; Garcia, A.; Tantiwiwat, M.; Nguyen, T. Q. Adv. Funct. Mater. 2009, 19, 3063.
[6] (a) Lai, W.-Y.; Liu, D.; Huang, W. Macromol. Chem. Phys. 2011, 212, 445.
(b) Lai, W.-Y.; He, Q.-Y.; Ma, Z.; Huang, W. Chem. Lett. 2009, 38, 286.
(c) Lai, W.-Y.; Zhu, X.-R.; He, Q.-Y.; Huang, W. Chem. Lett. 2009, 38, 392.
[7] (a) Zhang, F.-L.; Jespersen, K. G.; Björström, C.; Svensson, M.; Andersson, M. R.; Sundström, V.; Magnusson, K.; Moons, E.; Yartsev, A.; Inganäs, O. Adv. Funct. Mater. 2006, 16, 667.
(b) Blouin, N.; Michaud, A.; Leclerc, M. Adv. Mater. 2007, 19, 2295.
(c) Coffin, R. C.; Peet, J.; Rogers, J.; Bazan, G. C. Nat. Chem. 2009, 1, 657.
(d) Peng, Q.; Liu, X.-J.; Su, D.; Fu, G.-W.; Xu, J.; Dai, L.-M. Adv. Mater. 2011, 23, 4554.
[8] Boudreault, P. L. T.; Michaud, A.; Leclerc, M. Macromol. Rapid Commun. 2007, 28, 2176.
[9] (a) Lai, W.-Y.; He, Q.-Y.; Chen, D.-Y.; Huang, W. Chem. Lett. 2008, 37, 986.
(b) Feng, G.-L.; Ji, S.-J.; Lai, W.-Y.; Huang, W. Synlett 2006, 2841.
(c) Lai, W.-Y.; Liu, D.; Huang, W. Sci. China Chem. 2010, 53, 2472.
[10] Breedas, J.; Norton, J. E.; Cornil, J.; Coropceanu, V. Acc. Chem. Res. 2009, 42, 1691.
[11] He, Y.-J.; Zhao, G.-J.; Peng, B.; Li, Y.-F. Adv. Funct. Mater. 2010, 20, 3383.

Outlines

/