Research Progress of Plasmonic Photocatalyst in Organic Synthesis

  • Wang Chun ,
  • Gao Shutao ,
  • Zhou Xin ,
  • Wu Qiuhua ,
  • Jiao Caina ,
  • Wang Zhi
Expand
  • College of Science, Agricultural University of Hebei, Baoding 071001

Received date: 2014-05-12

  Revised date: 2014-06-25

  Online published: 2014-07-03

Supported by

Project supported by the Natural Science Foundation of Hebei Province (No.B2011204051) and the Innovation Research Program of Department of Education of Hebei for Hebei Provincial Universities (No.LJRC009).

Abstract

Photocatalytic chemical transformations are a hot topic in photocatalysis field and have received significant attention in recent years. Plasmonic photocatalysts based on metal surface plasmon resonance are novel visible light response photocatalysts, which have been applied in the catalysis of various important organic reactions, such as aerobic oxidation of alcohols, epoxidation of alkene, reduction of nitro-compounds, C—C coupling, and oxidation of benzene to phenol. Herein the recent progresses in selective organic synthesis catalyzed by plasmonic photocatalysts are reviewed and a perspective on the development trend is given.

Cite this article

Wang Chun , Gao Shutao , Zhou Xin , Wu Qiuhua , Jiao Caina , Wang Zhi . Research Progress of Plasmonic Photocatalyst in Organic Synthesis[J]. Chinese Journal of Organic Chemistry, 2014 , 34(11) : 2217 -2223 . DOI: 10.6023/cjoc201405021

References

[1] (a) Chen, C.; Ma, W.; Zhao, J. Chem. Soc. Rev. 2010, 39, 4206. (b) Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Adv. Mater. 2012, 24, 229.(c) Xiang, Q.; Yu, J.; Jaroniec, M. Chem. Soc. Rev. 2012, 41, 782.
[2] (a) Colmenares, J. C.; Luque, R. Chem. Soc. Rev. 2014, 43, 765.(b) Sarina, S.; Waclawik, E. R.; Zhu, H. Green Chem. 2013, 15, 1814.
[3] (a) Lang, X.; Chen, X.; Zhao, J. Chem. Soc. Rev. 2014, 43, 473.(b) Zhang, Y.; Zhang, N.; Tang, Z.-R.; Xu, Y.-J. ACS Sustainable Chem. Eng. 2013, 1, 1258.
[4] (a) Linic, S.; Christopher, P.; Ingram, D. B. Nat. Mater. 2011, 10, 911.(b) Hou, W.; Cronin, S. B. Adv. Funct. Mater. 2013, 23, 1612.
[5] Tsukamoto, D.; Shiraishi, Y.; Sugano, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. J. Am. Chem. Soc. 2012, 134, 6309.
[6] Naya, S.-I.; Inoue, A.; Tada, H. J. Am. Chem. Soc. 2010, 132, 6292.
[7] Tanaka, A.; Hashimoto, K.; Kominami, H. Chem. Commun. 2011, 47, 10446.
[8] Tanaka, A.; Hashimoto, K.; Kominami, H. J. Am. Chem. Soc. 2012, 134, 14526.
[9] Maldotti, A.; Molinari, A.; Juárez, R.; Garcia, H. Chem. Sci. 2011, 2, 1831.
[10] Hallett-Tapley, G. L.; Silvero, M. J. N.; González-Béjar, M. A.; Grenier, M.; Netto-Ferreira, J. C.; Scaiano, J. C. J. Phys. Chem. C 2011, 115, 10784.
[11] Sarina, S.; Zhu, H.; Jaatinen, E.; Xiao, Q.; Liu, H.; Jia, J.; Chen, C.; Zhao, J. J. Am. Chem. Soc. 2013, 135, 5793.
[12] Sarina, S.; Bai, S.; Huang, Y.; Chen, C.; Jia, J.; Jaatinen, E.; A. Ayoko, G.; Bao, Z.; Zhu, H. Green Chem. 2014, 16, 331.
[13] Sugano, Y.; Shiraishi, Y.; Tsukamoto, D.; Ichikawa, S.; Tanaka, S.; Hirai, T. Angew. Chem., Int. Ed. 2013, 52, 5295.
[14] Yang, X.; Zhang, A.; Gao, G.; Han, D.; Han, C.; Wang, J.; Lu, H.; Liu, J.; Tong, M. Catal. Commun. 2014, 43, 192.
[15] Christopher, P.; Xin, H.; Linic, S. Nat. Chem. 2011, 3, 467.
[16] Marimuthu, A.; Zhang, J.; Linic, S. Science 2013, 339, 1590.
[17] Ide, Y.; Nakamura, N.; Hattori, H.; Ogino, R.; Ogawa, M.; Sadakane, M.; Sano, T. Chem. Commun. 2011, 47, 11531.
[18] Ide, Y.; Matsuoka, M.; Ogawa, M. J. Am. Chem. Soc. 2010, 132, 16762.
[19] Zheng, Z.; Huang, B.; Qin, X.; Zhang, X.; Dai, Y.; Whangbo, M.-H. J. Mater. Chem. 2011, 21, 9079.
[20] Zhu, H.; Ke, X.; Yang, X.; Sarina, S.; Liu, H. Angew. Chem., Int. Ed. 2010, 49, 9657.
[21] van Schrojenstein Lantman, E. M.; Deckert-Gaudig, T.; Mank, A. J.; Deckert, V.; Weckhuysen, B. M. Nat. Nanotechnol. 2012, 7, 583.
[22] Tanaka, A.; Nishino, Y.; Sakaguchi, S.; Yoshikawa, T.; Imamura, K.; Hashimoto, K.; Kominami, H. Chem. Commun. 2013, 49, 2551.
[23] Guo, X.; Hao, C.; Jin, G.; Zhu, H.-Y.; Guo, X.-Y. Angew. Chem., Int. Ed. 2014, 126, 2004.
[24] Naya, S.-I.; Kimura, K.; Tada, H. ACS Catal. 2013, 3, 10.
[25] Zhao, J.; Zheng, Z.; Bottle, S.; Chou, A.; Sarina, S.; Zhu, H. Chem. Commun. 2013, 49, 2676.
[26] Gonzalez-Bejar, M.; Peters, K.; Hallett-Tapley, G. L.; Grenier, M.; Scaiano, J. C. Chem. Commun. 2013, 49, 1732.
[27] Pineda, A.; Gomez, L.; Balu, A. M.; Sebastian, V.; Ojeda, M.; Arruebo, M.; Romero, A. A.; Santamaria, J.; Luque, R. Green Chem. 2013, 15, 2043.
[28] Wang, F.; Li, C.; Chen, H.; Jiang, R.; Sun, L. D.; Li, Q.; Wang, J.; Yu, J. C.; Yan, C. H. J. Am. Chem. Soc. 2013, 135, 5588.
[29] Huang, X.; Li, Y.; Chen, Y.; Zhou, H.; Duan, X.; Huang, Y. Angew. Chem., Int. Ed. 2013, 52, 6063.
[30] Gao, S. T.; Shang, N. Z., Feng, C.; Wang, C.; Wang, Z. RSC Adv. 2014, 4, 39242.
[31] Tanaka, A.; Fuku, K.; Nishi, T.; Hashimoto, K.; Kominami, H. J. Phys. Chem. C 2013, 117, 16983.

Outlines

/