Reviews

Acid/Base-Controllable Molecular Machines and Molecular Switches

  • Weng Guan-Huan ,
  • Zhu Bin ,
  • Ye Yang ,
  • Li Shijun
Expand
  • a College of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000;
    b College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036

Received date: 2014-09-09

  Revised date: 2014-10-24

  Online published: 2014-11-13

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21072039, 91127010), the Program for Changjiang Scholars and Innovative Research Team in Chinese University (No. IRT1231), and the Zhejiang Provincial Natural Science Foundation of China (No. LZ13B030001).

Abstract

There are three kinds of energy-supplied modes to drive artificial molecular machines: chemical stimulation, electrochemical input and light stimulation. The basic principle of acid/base-controlled (or pH-operated) method is to change the chemical properties of components in the system by adjusting pH of the solution via adding acid/base compounds, to realize the movements of components, which belongs to chemical stimulation mode. The acid/base controlled method has been one of the most useful energy-driven modes for artificial molecular machines. This article summarizes the recent studies on acid/base- controllable molecular machines or molecular switches. The synthesis and operation of acid/base-controllable artificial molecular switches and molecular machines based on crown ethers and other macrocyclic hosts are reviewed. They exhibited great potential in the applications for information storage materials, electronic devices, and drug delivery.

Cite this article

Weng Guan-Huan , Zhu Bin , Ye Yang , Li Shijun . Acid/Base-Controllable Molecular Machines and Molecular Switches[J]. Chinese Journal of Organic Chemistry, 2015 , 35(2) : 309 -324 . DOI: 10.6023/cjoc201409021

References

[1] (a) Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. Angew. Chem. Int. Ed. 2000, 39, 3348.
(b) Kinbara, K.; Aida, T. Chem. Rev. 2005, 105, 1377.
(c) Ballardini, R.; Balzani, V.; Credi, A.; Gandolfi, M. T.; Venturi, M. Acc. Chem. Res. 2001, 34, 445.
(d) Champin, B.; Mobian, P.; Sauvage, J. P. Chem. Soc. Rev. 2007, 36, 358.
(e) Ma, X.; Wang, Q. C.; Tian, H. Process Chem. 2009, 21, 106 (in Chinese). (马骧, 王巧纯, 田禾, 化学进展, 2009, 21, 106.)
(f) Kay, E.R.; Leigh, D.A.; Zerbetto, F. Angew. Chem., Int. Ed. 2007, 46, 72.
(g) Li, H.; Xu, X. C.; Chen, J. W.; Yang, C. L.; Qing, J. G. Chin. J. Org. Chem. 2008, 28, 2057 (in Chinese). (李昊,许曦晨,陈嘉伟,杨楚罗,秦金贵,有机化学,2008, 28, 2057.)
(h) Li, S.; Huang, J.; Cook, T. R.; Pollock, B. J.; Kim, H.; Chi, K.-W.; Stang, P. J. J. Am. Chem. Soc. 2013, 135, 2084.
(i) Li, S.; Huang, J.; Zhou, F.; Cook, T. R.; Yan, X.; Ye, Y.; Zhu, B.; Zheng, B.; Stang, P. J. J. Am. Chem. Soc. 2014, 136, 5908.
(j) Zhou, D. X.; Sun, T.; Deng, W. Chin. J. Org. Chem. 2012, 32, 239 (in Chinese). (周冬香, 孙涛, 邓维, 有机化学, 2012, 32, 239.)
(k) Fan, C. H.; Yang, Y. Q.; Zhao, W.; Xiao, Y.; Luo, J.; Liu, X. Y. Acta Chim. Sinica 2013, 71, 934 (in Chinese). (范存华, 杨逸群, 赵伟, 肖宇, 罗静, 刘晓亚, 化学学报, 2013, 71, 934.)
(l) Han, Y.; Guo, J. B.; Chen, C. F. Chin. J. Chem. 2014, 32, 721.
(m) Yue, S. Y.; Zhou, Y. J.; Yao, Y.; Xue, M. Acta Chim. Sinica 2014, 72, 1053 (in Chinese). (岳诗雨, 周玉娟, 姚勇, 薛敏, 化学学报, 2014, 72, 1053.)
[2] (a) Dong, S. Y.; Luo, Y.; Yan, X. Z.; Zheng, B.; Ding, X.; Yu, Y. H.; Ma, Z.; Zhao, Q. L.; Huang, F. H. Angew. Chem., Int. Ed. 2011, 50, 1905.
(b) Zhang, M. M.; Xu, D. H.; Yan, X. Z.; Chen, J. Z.; Dong, S. Y.; Zheng, B.; Huang, F. H. Angew. Chem., Int. Ed. 2012, 51, 7011.
(c) Yan, X. Z.; Xu, D. H.; Chi, X. D.; Chen, J. Z.; Dong, S. Y.; Ding, X.; Yu, Y. H.; Huang, F. H. Adv. Mater. 2012, 24, 362.
(d) Yang, W. L.; Li, Y. J.; Zhang, J. H.; Chen, N.; Chen, S. H.; Liu, H. B.; Li, Y. L. Small 2012, 8, 2602.
(e) Yang, W. L.; Li, Y. J.; Liu, H. B.; Chi, L. F.; Li, Y. L. Small 2012, 8, 504.
(f) Li, Y. J.; Liu, H. B.; Li, Y. L. Curr. Org. Chem. 2011, 15, 97.
[3] (a) Wang, F.; Han, C. Y.; He, C. L.; Zhou, Q. Z.; Zhang, J. Q.; Wang, C.; Li, N.; Huang, F. H. J. Am. Chem. Soc. 2008, 130, 11254.
(b) Dong, S. Y.; Zheng, B.; Xu, D. H.; Yan, X. Z.; Zhang, M. M.; Huang, F. H. Adv. Mater. 2012, 24, 3191.
[4] Ashton, P. R.; Ballardini, R.; Balzani, V.; Baxter, I.; Credi, A.; Fyfe, M. C. T.; Gandolfi, M. T.; Gomez-Lopez, M.; Martine-Diaz, M.; Piersanti, A.; Spencer, N.; Stoddart, J. F.; Venturi, M.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 1998, 120, 1932.
[5] Ashton, P. R.; Baldoni, V.; Balzani, V.; Credi, A.; Hoffmann, H. D. A.; Martinez, D. M.; Raymo, F. M.; Stoddart, J. F.; Venturi, M. Chem. Eur. J. 2001, 16, 3482.
[6] (a) Badjic, J. D.; Balzani, V.; Credi, A.; Silvi, S.; Stoddart, J. F. Science 2004, 303, 1845.
(b) Badjic, J. D.; Ronconi, C. M.; Stoddart, J. F.; Balzani, V.; Silvi, S.; Credi, A. J. Am. Chem. Soc. 2006, 128, 1489.
[7] (a) Wu, J. S.; Leung, K. C. F.; Benítez, D.; Han, J. Y.; Cantrill, S. J.; Fang, L.; Stoddart, J. F. Angew. Chem., Int. Ed. 2008, 47, 7470.
(b) Fang, L.; Hmadeh, M.; Wu, J.; Olson, M. A.; Spruell, J. M.; Trabolsi, A.; Yang, Y. W.; Elhabiri, M.; Albrecht-Gary, A.; Stoddart, J. F. J. Am. Chem. Soc. 2009, 131, 7126.
[8] Du, G.; Moulin, E.; Jouault, N.; Buhler, E.; Giuseppone, N. Angew. Chem., Int. Ed. 2012, 51, 12504.
[9] Leigh, D. A.; Thomson, A. R. Tetrahedron. 2008, 64, 8411.
[10] Coutrot, F.; Eric, B. Chem. Eur. J. 2008, 14, 4784.
[11] Clavel, C.; Romuald, C.; Brabet, E.; Coutrot, F. Chem. Eur. J. 2013, 19, 2982.
[12] (a) Credit, A.; Balzani, V.; Langford, S. J.; Stoddart, J. F. J. Am. Chem. Soc. 1997, 119, 2679.
(b) Asakawa, M.; Iqbal, S.; Stoddart, J. F.; Tinker, N. D. Angew. Chem., Int. Ed. 1996, 35, 976.
(c) Ballardini, R.; Balzani, V.; Credi, A.; Gandolfi, M. T.; Langford, S. J.; Menzer, S.; Prodi, L.; Stoddart, J. F.; Venturi, M.; Williams, D. J. Angew. Chem., Int. Ed. 1996, 35, 978.
[13] Yan, X. Z.; Wu, X. J.; Wei, P. F.; Zhang, M. M.; Huang, F. H. Chem. Commun. 2012, 48, 8201.
[14] Yan, X. Z.; Zhang, M. M.; Wei, P. F.; Zheng, B.; Chi, X. D.; Ji, X. F.; Huang, F. H. Chem. Commun. 2011, 47, 9840.
[15] Yang, W.; Li, Y. J.; Zhang, J. H.; Yu, Y. W.; Liu, T. F.; Liu, H. B.; Li, Y. L. Org. Biomol. Chem. 2011, 9, 6022.
[16] Yang, W.; Li, Y. J.; Zhang, J. H.; Chen, N.; Chen, S. H.; Liu, H. B.; Li, Y. L. J. Org. Chem. 2011, 76, 7750.
[17] Li, H.; Zhang, H.; Zhang, Q.; Zhang, Q. W.; Qu, D. H. Org. Lett. 2012, 14, 5900.
[18] Zhang, H.; Zhou, B.; Li, H.; Qu, D. H.; Tian, H. J. Org. Chem. 2013, 78, 2091.
[19] Jiang, W.; Han, M.; Zhang, H. Y.; Zhang, Z. J.; Liu, Y. Chem. Eur. J. 2009, 15, 9938.
[20] Jiang, Q.; Zhang, H. Y.; Han, M.; Ding, Z. J.; Liu, Y. Org. Lett. 2010, 12, 1728.
[21] Li, S. J.; Weng, G. H.; Zheng, B.; Yan, X. Z.; Wu, J.; Lin, W.; Chen, H. X.; Zhang, X. C. Eur. J. Org. Chem. 2012, 33, 6570.
[22] Bissell, R. A.; Cordova, E.; Kaifer, A. E.; Stoddart, J. F. Nature 1994, 369, 133.
[23] Leigh, D. A.; Thomson, A. R. Org. Lett. 2006, 8, 5377.
[24] Yen, M.; Li, W. S.; Lai, C. C.; Chao, I.; Chiu, S. H. Org. Lett. 2006, 8, 3223.
[25] Zhou, W.; Li, J.; He, X.; Li, C.; Lv, J.; Li, Y.; Wang, S.; Liu, H.; Zhu, D. Chem. Eur. J. 2008, 14, 754.
[26] Zheng, H. Y.; Zhou, W. D.; Lv, J.; Yin, X. D.; Li, Y. J.; Liu, H. B.; Li, Y. L. Chem. Eur. J. 2009, 15, 13253.
[27] Zhao, Y. J.; Li, Y. J.; Lai, S. W.; Yang, J.; Liu, C.; Liu, H. B.; Che, C. M.; Li, Y. L. Org. Biomol. Chem. 2011, 9, 7500.
[28] Huang, F. H.; Switek, K. A.; Gibson, H. W. Chem. Commun. 2005, 9, 3655.
[29] Zhang, Z. J.; Zhang, Y. M.; Liu, Y. J. Org. Chem. 2011, 76, 4682.
[30] iang, Y.; Guo, J.; Chen, C. Org. Lett. 2010, 12, 4248.
[31] Hu, S. Z.; Chen, C. F. Chem. Eur. J. 2011, 17, 5424.
[32] Khashab, N. M.; Trabolsi, A.; Lau, Y. A.; Ambrogio, M. W.; Friedman, D. C.; Khatib, H. A.; Zink, J. I.; Stoddart, J. F. Eur. J. Org. Chem. 2009, 11, 1669.
[33] Khashab, N. M.; Belowich, M. E.; Trabolsi, A.; Friedman, D. C.; Valente, C.; Lau, Y.; Khatib, H. A.; Zink, J. I.; Stoddart, J. F. Chem. Commun. 2009, 36, 5371.
[34] Angelos, S.; Khashab, N. M.; Yang, Y. W.; Trabolsi, A.; Khatib, H. A.; Stoddart, J. F.; Zink, J. I. J. Am. Chem. Soc. 2009, 131, 12912.
[35] Thomas, C. R.; Ferris, D. P.; Lee, J. H.; Choi, E.; Cho, M. H.; Kim, E. S.; Stoddart, J. F.; Shin, J. S.; Cheon, J.; Zink, J. I. J. Am. Chem. Soc. 2009, 132, 10623.
[36] Zhao, Y. L.; Li, Z.; Kabehie, S.; Botros, Y. Y.; Stoddart, J. F.; Zink, J. I. J. Am. Chem. Soc. 2009, 132, 13016.
[37] Meng, H.; Xue, M.; Xia, T.; Zhao, Y. L.; Tamanoi, F.; Stoddart, J. F.; Zink, J. I.; Nel, A. E. J. Am. Chem. Soc. 2010, 132, 12690.
[38] Boyle, M. M.; Smaldone, R. A.; Whalley, A. C.; Ambrogio, M. W.; Botros, Y. Y.; Stoddart, J. F. Chem. Sci. 2011, 2, 204.
[39] Ambrogio, M. W.; Thomas, C. R.; Zhao, Y. L.; Zink, J. I.; Stoddart, J. F. Acc. Chem. Res. 2011, 44, 903.
[40] (a) Yan, X.; Wang, F.; Zheng, B.; Huang, F. Chem. Soc. Rev. 2012, 41, 6042.
(b) Yan, X.; Li, S.; Pollock, B. J.; Cook, T. R.; Chen, J.; Zhang, Y.; Ji, X.; Yu, Y.; Huang, F.; Stang, P. J. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 15585.
(c) Li, S.; Weng, G.-H.; Lin, W.; Sun, Z.-B.; Zhou, M.; Zhu, B.; Ye, Y.; Wu, J. Polym. Chem. 2014, 5, 3994.
(d) Wei, P.; Li, S.; Zhang, Y.; Yu, Y.; Yan, X. Polym. Chem. 2014, 5, 3972.
[41] Fahrenbach, A. C.; Warren, S. C.; Incorvati, J. T.; Avestro, A. J.; Barnes, J. C.; Stoddart, J. F.; Grzybowski, B. A. Adv. Mater. 2013, 25, 331.
[42] Wang, F.; Zhang, J. Q.; Ding, X.; Dong, S. Y.; Liu, M.; Zheng, B.; Li, S. J.; Wu, L.; Yu, Y. H.; Gibson, H. W.; Huang, F. H. Angew. Chem., Int. Ed. 2010, 49, 1090.
[43] Ji, X. F.; Yao, Y.; Li, J. Y.; Yan, X. Z.; Huang, F. H. J. Am. Chem. Soc. 2013, 135, 74.

Outlines

/