ARTICLE

Recent Progress in Ratiometric Fluorescent Probes Based on Excitation Energy Transfer Mechanism

  • Chen Zhonglin ,
  • Li Hongling ,
  • Wei Jia ,
  • Xiao Yi ,
  • Yu Haibo
Expand
  • a College of Environmental Sciences, Liaoning University, Shenyang 110036;
    b State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024

Received date: 2014-09-23

  Revised date: 2014-11-18

  Online published: 2014-12-02

Supported by

Project supported by the National Natural Science Foundation of China (No. 21302080), and the Program Funded by Liaoning Province Education Administration (No. L2014010).

Abstract

Excitation energy transfer (EET) is one of the vital photophysical phenomenons, which is widely used in many applications, such as the design of ratiometric fluroesent probes, molecular beacon, DNA analysis, and so on. The process of energy transfer from donor to acceptor can be regulated by two factors: the spatial distance between donor and acceptor, and the spectral overlaps between donor emission and acceptor absorption, which results that there is a wide variety in the ratio at two different wavelengths of ratiometric fluorescent probes. In this review, noticeable EET systems with different donor fluorophore, connection form and energy transfer efficiency between donor and acceptor, and the modulation of spatial distance or spectral overlap are summarized. Finally, as a promising tool, the future developing prospects of EET fluorescent probes in bioimaging and medical diagnostics are discussed and highlighted.

Cite this article

Chen Zhonglin , Li Hongling , Wei Jia , Xiao Yi , Yu Haibo . Recent Progress in Ratiometric Fluorescent Probes Based on Excitation Energy Transfer Mechanism[J]. Chinese Journal of Organic Chemistry, 2015 , 35(4) : 789 -801 . DOI: 10.6023/cjoc201409036

References

[1] (a) Wang, F.; Wang, L.; Chen, X.; Yoon, J. Chem. Soc. Rev. 2014, 43, 4312.
(b) Ding, Y.; Li, X.; Li, T.; Zhu, W.; Xie, Y. J. Org. Chem. 2013, 78, 5328.
(c) Huang, Y.; Wang, M.; She, M.; Yang, Z.; Liu, P.; Li, J.; Shi, Z. Chin. J. Org. Chem. 2014, 34, 1 (in Chinese).
(黄阳阳, 王梦嘉, 厍梦尧, 杨征, 刘萍, 李剑利, 史真, 有机化学, 2014, 34, 1.)
(d) Chu, N.; Feng, C.; Ji, M.; Acta Chim. Sinica 2013, 71, 1459 (in Chinese).
(楚宁宁, 冯成亮, 吉民, 化学学报, 2013, 71, 1459.)
[2] (a) Zhou, J.; Yang, M.; Meng, W.; Cheng, Z.; Yang, B. Chin. J. Org. Chem. 2014, 34 1646 (in Chinese).
(周佳, 杨美盼, 孟文斐, 成昭, 杨秉勤, 有机化学, 2014, 43, 1646.)
(b) Zhang, Y.; Li, W.; Wang, Q.; Zhang, R.; Xiong, Q.; Shen, X.; Guo, J.; Chen, X. Acta. Chim. Sinica 2013, 71, 1496 (in Chinese).
(张勇, 李伟, 王强, 张若璇, 熊启杰, 沈祥, 郭靖, 陈雪梅, 化学学报, 2013, 71, 1496.)
(c) Xiang, C.; Liu, H.; Meng, Q.; Lan, M.; Wei, G. Acta Chim. Sinica 2013, 71, 1435 (in Chinese).
(向德成, 刘恒, 孟庆华, 蓝闽波, 卫钢, 化学学报, 2013, 71, 1435.)
[3] Grabowski, Z. R.; Rotkiewicz, K.; Rettig, W. Chem. Rev. 2003, 103, 3899.
[4] Komatsu, T.; Urano, Y.; Fujikawa, Y.; Kobayashi, T.; Kojima, H.; Terai, T.; Hanaoka, K.; Nagano, T. Chem. Commun. 2009, 45, 7015.
[5] de Silva, A. P.; Gunaratne, H. Q.; Gunnlaugsson, T.; Huxley, A. J.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515.
[6] Lim, C. S.; Masanta, G.; Kim, H. J.; Han, J. H.; Kim, H. M.; Cho, B. R. J. Am. Chem. Soc. 2011, 133, 11132.
[7] Zhang, J. F.; Lim, C. S.; Bhuniya, S.; Cho, B. R.; Kim, J. S. Org. Lett. 2011, 13, 1190.
[8] Grynkiewicz, G.; Poenie, M.; Tsien, R. Y. J. Biol. Chem. 1985, 25, 3440.
[9] Tsien, R. Y.; Rink, T. J.; Poenie, M. Cell Calcium 1985, 6, 145.
[10] (a) Peng, X.; Du, J.; Fan, J.; Wang, J.; Wu, Y.; Zhao, J.; Sun, S.; Xu, T. J. Am. Chem. Soc. 2007, 129, 1500.
(b) Lu, C. L.; Xu, Z. C.; Cui, J. N.; Zhang, R.; Qian, X. H. J. Org. Chem. 2007, 72, 3554.
(c) Zhu, B.; Zhang, X.; Li, Y.; Wang, P.; Zhang, H.; Zhuang, X. Chem. Commun. 2010, 46, 5710.
(d) Cui, L.; Zhong, Y.; Zhu, W.; Xu, Y.; Du, Q.; Wang, X.; Qian, X.; Xiao, Y. Org. Lett. 2011, 13, 928.
(e) Cao, X.; Lin, W.; Yu, Q.; Wang, J. Org. Lett. 2011, 13, 6098.
(f) Wan, Q.; Song, Y.; Li, Z.; Gao, X.; Ma, H. Chem. Commun. 2013, 49, 502.
[11] (a) Li, C. Y.; Zhang, X. B.; Qiao, L.; Zhao, Y.; He, C. M.; Huan, S. Y.; Lu, L. M.; Jian, L. X.; Shen, G. L.; Yu, R. Q. Anal. Chem. 2009, 81, 9993.
(b) Ueyama, H.; Takagi, M.; Takenaka, S. J. Am. Chem. Soc. 2002, 124, 14286.
(c) Lee, L. G.; Spurgeon, S. L.; Heiner, C. R.; Benson, S. C.; Rosenblum, B. B.; Menchen, S. M.; Graham, R. J.; Constantinescu, A.; Upadhya, K. G.; Cassel, J. M. Nucleic Acids Res. 1997, 25, 2816.
[12] Yu, H.; Jin, L.; Dai, Y.; Li, H.; Xiao, Y. New J. Chem. 2013, 37, 1688.
[13] Othman, A. B.; Lee, J. W.; Wu, J. S.; Kim, J. S.; Abidi, R.; Thuery, P.; Strub, J. M.; Dorsselaer, A. V.; Vicens, J. J. Org. Chem. 2007, 72, 7634.
[14] (a) Liu, J. Y.; Yeung, H. S.; Xu, W.; Li, X.; Ng, D. K. Org. Lett. 2008, 10, 5421.
(b) Kumar, M.; Kumar, N.; Bhalla, V.; Singh, H.; Sharma, P. R.; Kaur, T. Org. Lett. 2011, 13, 1422.
[15] Speiser, S. Chem. Rev. 1996, 96, 1953.
[16] Fan, J.; Hu, M.; Zhan, P.; Peng, X. Chem. Soc. Rev. 2013, 42, 29.
[17] Diring, S.; Puntoriero, F.; Nastasi, F.; Campagna, S.; Ziessel, R. J. Am. Chem. Soc. 2009, 131, 6108.
[18] Zhang, X.; Xiao, Y.; Qian, X. Org. Lett. 2008, 10, 29.
[19] Wu S.-K. Supramolecular Photochemistry Introduction: Fundamentals and Applications, Science Press, Beijing, 2005 (in Chinese).
(吴世康, 超分子光化学导论: 基础与应用, 科学出版社, 北京, 2005.)
[20] Kautsky, H. Trans. Faraday Soc. 1939, 35, 216.
[21] Knibbe, H.; Rehm, D.; Weller, A. Ber. Bunsen-Ges. Phys. Chem. 1968, 72, 257.
[22] Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed., Springer, New York, 2006, pp. 443~449.
[23] Kim, T. G.; Castro, J. C.; Loudet, A.; Jiao, J. G.; Hochstrasser, R. M.; Burgess, K.; Topp, M. R. J. Phys. Chem. A 2006, 110, 20.
[24] Ueno, Y.; Jose, J.; Loudet, A.; Perez-Bolivar, C.; Anzenbacher, P., Jr.; Burgess, K. J. Am. Chem. Soc. 2011, 133, 51.
[25] Ziessel, R.; Goze, C.; Ulrich, G.; Cesario, M.; Retailleau, P.; Harriman, A.; Rostron, J. P. Chem. Eur. J. 2005, 11, 7366.
[26] Sapsford, K. E.; Berti, L.; Medintz, I. L. Angew. Chem., Int. Ed. Engl. 2006, 45, 4562. [27] Kasha M. J. Chem. Phys. 1952, 20, 71.
[28] Wahlroos, R.; Toivonen, J.; Tirri, M.; Hanninen, P. J. Fluoresc. 2006, 16, 379.
[29] Liu, J. Y.; Ermilov, E. A.; Roder, B.; Ng, D. K. Chem. Commun. 2009, 1517.
[30] Lee, M. H.; Kim, H. J.; Yoon, S.; Park, N.; Kim, J. S. Org. Lett. 2008, 10, 213.
[31] Suresh, M.; Mishra, S.; Mishra, S. K.; Suresh, E.; Mandal, A. K.; Shrivastav, A.; Das, A. Org. Lett. 2009, 11, 2740.
[32] Li, J.; Petrassi, H. M.; Tumanut, C.; Masick, B. T.; Trussell, C.; Harris, J. L. Bioorg. Med. Chem. 2009, 17, 1064.
[33] Albers, A. E.; Okreglak, V. S.; Chang, C. J. J. Am. Chem. Soc. 2006, 128, 9640.
[34] Kurishita, Y.; Kohira, T.; Ojida, A.; Hamachi, I. J. Am. Chem. Soc. 2010, 132, 13290.
[35] Lin, W.; Yuan, L.; Cao, Z.; Feng, Y.; Song, J. Angew. Chem., Int. Ed. Engl. 2010, 49, 375.
[36] Ye, G. J.; Zhao, T. T.; Jin, Z. N.; Cu, P. Y.; Mao, J. Y.; Xu, Q. H.; Xu, Q. F.; Lu, J. M.; Li, N. J.; Song, Y. L. Dyes Pigm. 2012, 94, 271.
[37] Zhang, J. F.; Lim, C. S.; Bhuniya, S.; Cho, B. R.; Kim, J. S. Org. Lett. 2011, 13, 1190.
[38] Jisha, V. S.; Thomas, A. J.; Ramaiah, D. J. Org. Chem. 2009, 74, 6667.
[39] Bojinov, V. B.; Venkova, A. I.; Georgiev, N. I. Sensors Actuators, B 2009, 143, 42.
[40] Zhou, Z.; Yu, M.; Yang, H.; Huang, K.; Li, F.; Yi, T.; Huang, C. Chem. Commun. 2008, 29, 3387.
[41] Yu, H.; Fu, M.; Xiao, Y. Phys. Chem. Chem. Phys. 2010, 12, 7386.
[42] Takakusa, H.; Kikuchi, K.; Urano, Y.; Higuchi, T.; Nagano, T. Anal. Chem. 2001, 73, 939.
[43] Wang, W.; Rusin, O.; Xu, X.; Kim, K. K.; Escobedo, J. O.; Fakayode, S. O.; Fletcher, K. A.; Lowry, M.; Schowalter, C. M.; Lawrence, C. M.; Fronczek, F. R.; Warner, I. M.; Strongin, R. M. J. Am. Chem. Soc. 2005, 127, 15949.
[44] Burdette, S. C.; Walkup, G. K.; Spingler, B.; Tsien, R. Y.; Lippard, S. J. J. Am. Chem. Soc. 2001, 123, 7831.
[45] Han, Z. X.; Zhang, X. B.; Li, Z.; Gong, Y. J.; Wu, X. Y.; Jin, Z.; He, C. M.; Jian, L. X.; Zhang, J.; Shen, G. L.; Yu, R. Q. Anal. Chem. 2010, 82, 3108.
[46] Jiao, G. S.; Thoresen, L. H.; Burgess, K. J. Am. Chem. Soc. 2003, 125, 14668.
[47] Bandichhor, R.; Petrescu, A. D.; Vespa, A.; Kier, A. B.; Schroeder, F.; Burgess, K. J. Am. Chem. Soc. 2006, 128, 10688.
[48] Han, J.; Loudet, A.; Barhoumi, R.; Burghardt, R. C.; Burgess, K. J. Am. Chem. Soc. 2009, 131, 1642.
[49] Rurack, K.; Kollmannsberger, M.; Daub, J. Angew. Chem., Int. Ed. Engl. 2001, 40, 385.
[50] Umezawa, K.; Matsui, A.; Nakamura, Y.; Citterio, D.; Suzuki, K. Chem. Eur. J. 2009, 15, 1096.
[51] Zhang, X.; Yu, H.; Xiao, Y. J. Org. Chem. 2012, 77, 669.
[52] Zhou, Y.; Xiao, Y.; Chi, S.; Qian, X. Org. Lett. 2008, 10, 633.
[53] Coskun, A.; Akkaya, E. U. J. Am. Chem. Soc. 2005, 127, 10464.
[54] Coskun, A.; Akkaya, E. U. J. Am. Chem. Soc. 2006, 128, 14474.
[55] Yu, H. Ph.D. Dissertation, Dalian University of Technology, Dalian, 2013 (in Chinese).
(于海波, 博士论文, 大连理工大学, 大连, 2013.)
[56] Zhang, X.; Xiao, Y.; Qian, X. Angew. Chem., Int. Ed. Engl. 2008, 47, 8025.
[57] Yu, H.; Xiao, Y.; Guo, H.; Qian, X. Chem. Eur. J. 2011, 17, 3179.
[58] Yu, H.; Xiao, Y.; Guo, H. Org. Lett. 2012, 14, 2014.
[59] Yuan, L.; Lin, W.; Zhao, S.; Gao, W.; Chen, B.; He, L.; Zhu, S. J. Am. Chem. Soc. 2012, 134, 13510.
[60] Fu, M.; Xiao, Y.; Qian, X.; Zhao, D.; Xu, Y. Chem. Commun. 2008, 1780.
[61] Zhou, Y.; Xiao, Y.; Li, D.; Fu, M.; Qian, X. J. Org. Chem. 2008, 73, 1571.

Outlines

/