Reviews

Recent Progress in the Studies of Biomass Platform Molecule γ-Velerolactone

  • Yang Zhen ,
  • Fu Yao ,
  • Guo Qingxiang
Expand
  • Department of Chemistry, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026

Received date: 2014-09-07

  Revised date: 2014-11-09

  Online published: 2014-12-08

Supported by

Project supported by the National Basic Research Program of China (973 Program, No. 2012CB215305), the National Natural Science Foundation of China (Nos. 21325208, 21121172209), the Foundational Research Funds for the Central Universities (No. WK2060190025), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20123402130008) and the Fok Ying Tung Education Foundation.

Abstract

Lignocellulosic biomass is an abundant and renewable resource of carbon that allows the production of versatile and viable chemicals and fuels. Various processes have been developed for the conversion of biomass and its derivatives into platform molecules. Among these molecules, γ-valerolactone (GVL) is widely used because of its high stability, low toxicity and low volatility. GVL is an ideal precursor for the production of fuels and value-added chemicals. Up to now, various catalysts and reaction systems have been developed for the production of GVL from biomass, and many processes for the conversion GVL into fuels and chemicals have also been reported. In this paper, the different feedstocks including levulinic acid (LA), levulinate esters and other compounds for the production of GVL, as well as the catalytic systems including homogeneous and heterogeneous catalysts for the hydrogenation of LA to GVL using H2 gas or formic acid (FA) as hydrogen source are summarized. The conversion of GVL into fuels, chemicals and polymers is reviewed.

Cite this article

Yang Zhen , Fu Yao , Guo Qingxiang . Recent Progress in the Studies of Biomass Platform Molecule γ-Velerolactone[J]. Chinese Journal of Organic Chemistry, 2015 , 35(2) : 273 -283 . DOI: 10.6023/cjoc201409012

References

[1] For insight into humanities relience on fossil resources for the manufacture of fuels and materials see: BP Energy Outlook 2030, http://www.bp.com/sectionbodycopy.do?categoryId=7500&content Id=7068481; http://www.plasticseurope.org/.
[2] (a) Tilman, D.; Socolow, R.; Foley, J. A.; Hill, J.; Larson, E.; Pacala, L. L. S.; Reilly, J.; Searchinger, T.; Somerville, C.; Williams, R. Science 2009, 325, 270.
(b) Wright, W. R. H.; Palkovits, R. ChemSusChem 2012, 5, 1657.
[3] Cheng, S.; Zhu, S. BioResources 2009, 4, 456.
[4] Wyman, C. E.; Dale, B. E.; Elander, R. T.; Holtzapple, M.; Ladisch, M. R.; Lee, Y. Y. Bioresour. Technol. 2005, 96, 1959.
[5] (a) Corma, A.; Iborra, S.; Velty, A. Chem. Rev. 2007, 107, 2411.
(b) Huber, G. W.; Iborra, S.; Corma, A. Chem. Rev. 2006, 106, 4044.
[6] (a) Huber, G. W.; Chheda, J. N.; Barrett, C. J.; Dumesic, J. A. Science 2005, 308, 1446.
(b) Zhao, H. B.; Holladay, J. E.; Brown, H.; Zhang, Z. C. Science 2007, 316, 1597.
(c) Leshkov, Y. R.; Chheda, J. N.; Dumesic, J. A. Science 2006, 312, 1933.
[7] (a) Yan, N.; Zhao, C.; Luo, C.; Dyson, P. J.; Liu, H. C.; Kou, Y. J. Am. Chem. Soc. 2006, 128, 8714.
(b) Hu, X.; Li, C. Z. Green Chem. 2011, 13, 1676.
(c) Leshkov, Y. R.; Barrett, C. J.; Liu, Z. Y.; Dumesic, J. A. Nature 2007, 447, 982.
(d) Thananatthanachon, T.; Rauchfuss, T. B. Angew. Chem., Int. Ed. 2010, 49, 6616.
[8] Melero, J. A.; Iglesias, J.; Garcia, A. Energy Environ. Sci. 2012, 5, 7393.
[9] (a) Serrano-Ruiz, J. C.; Luque, R.; Sepulveda-Escribano, A. Chem. Soc. Rev. 2011, 40, 5266.
(b) Alonso, D. M.; Bond, J. Q.; Dumesic, J. A. Green Chem. 2010, 12, 1493.
(c) Gallezot, P. Chem. Soc. Rev. 2012, 41, 1538.
[10] Alonso, D. M.; Wettstein, S. G.; Dumesic, J. A. Green Chem. 2013, 15, 584.
[11] Horváth, I. T.; Mehdi, H.; Fabos, V.; Boda, L.; Mika, L. T. Green Chem. 2008, 10, 238.
[12] (a) Serrano-Ruiz, J. C.; Braden, D. J.; West, R. M.; Dumesic, J. A. Appl. Catal. B: Environ. 2010, 100, 184.
(b) Bond, J. Q.; Alonso, D. M.; Wang, D.; West, R. M.; Dumesic, J. A. Science 2010, 327, 1110.
(c) Lange, J. P.; Price, R.; Ayoub, P. M.; Louis, J.; Petrus, L.; Clarke, L.; Gosselink, H. Angew. Chem. 2010, 122, 4581.
(d) Palkovits, R. Angew. Chem., Int. Ed. 2010, 49, 4336.
[13] (a) Manzer, L. E. Appl. Catal. A: Gen. 2004, 272, 249.
(b) Ma, Z.; Hong, Y.; Nelson, D. M.; Pichamuthu, J. E.; Leeson, C. E.; Wagner, W. R. Biomacromolecules 2011, 12, 3265.
(c) Meulen, I. V.; Gubbels, E.; Huijser, S.; Sablong, R.; Koning, C. E.; Heise, A.; Duchateau, R. Macromolecules 2011, 44, 4301.
(d) Cerniauskaite, D.; Rousseau, J.; Sackus, A.; Rollin, P.; Tatibouet, A. Eur. J. Org. Chem. 2011, 2293.
(e) Guo, R.-H.; Zhang, Q.; Ma, Y.-B.; Huang, X.-Y.; Luo, J.; Wang, L.-J.; Geng, C.-A.; Zhan, X.-M.; Zhou, J.; Jiang, Z.-Y.; Chen, J.-J. Bioorg. Med. Chem. 2011, 19, 1400.
[14] (a) Jessop, P. G. Green Chem. 2011, 13, 1391.
(b) Fegyverneki, D.; Orha, L.; Horváth, I. T. Tetrahedron 2010, 66, 1078.
(c) Horváth, I. T. Green Chem. 2008, 10, 1024.
[15] (a) Christian, R. V.; Brown, H. D.; Hixon, R. M. J. Am. Chem. Soc. 1947, 69, 1961.
(b) Elliott, D. C.; Frye, J. G. US 5883266, 1999 [Chem. Abstr. 1999, 130, 211627].
[16] (a) Rose, M.; Palkovits, R. Macromol. Rapid Commun. 2011, 32, 1299.
[17] Osakada, K.; Yoshikawa, S.; Ikariya, T. J. Organomet. Chem. 1982, 231, 79.
[18] (a) Ohkkuma, T.; Kitamura, M.; Noyori, R. Tetrahedron Lett. 1990, 31, 5509.
(b) Starodubtseva, E. V.; Ferapontov, V. A. Russ. Chem. Bull. 2005, 54, 2374.
[19] (a) Mehdi, H.; Bodor, A.; Tuba, R.; Horváth, I. T. Abstr. Papers Am. Chem. Soc. 2003, 226, U721.
(b) Delhomme, C.; Schaper, L. A. J. Organomet. Chem. 2013, 724, 297.
[20] Haan, R. J.; Lange, J.-P.; Petrus, L.; Petrus-Hoogenbosch, C. J. M. US 20070208183, 2007 [Chem. Abstr. 2007, 147, 323454].
[21] (a) Kawasaki, I.; Tsunoda, K.; Tsuji, T.; Yamaguchi, T.; Shibuta, H.; Uchida, N.; Yamashita, M.; Ohta, S. Chem. Commun. 2005, 2134.
(b) Cheung, F. K.; Clarke, A. J.; Clarkson, G. J.; Fox, D. J.; Graham, M. A.; Lin, C. X.; Crivill, A. L.; Wills, M. Dalton Trans. 2010, 39, 1395.
[22] (a) Mehdi, H.; Fabos, V.; Tuba, R.; Bodor, A.; Mika, L. T.; Horváth, I. T. Top. Catal. 2008, 48, 49.
(b) Tukacs, J. M.; Király, D.; Dibó, G. Green Chem. 2012, 14, 2057.
[23] Deng, L.; Li, J.; Lai, D.-M.; Fu, Y.; Guo, Q.-X. Angew. Chem., Int. Ed. 2009, 121, 6651.
[24] Chalid, M.; Broekhuis, A. A.; Heeres, H. J. J. Mol. Catal. A: Chem. 2011, 341, 14.
[25] Li, W.; Xie, J.-H.; Lin, H.; Zhou, Q.-L. Green Chem. 2012, 14, 2388.
[26] Deng, J.; Wang, Y.; Pan, T.; Xu, Q.; Guo, Q.-X.; Fu, Y. ChemSusChem 2013, 6, 1163.
[27] Dunlop, A. P.; Madden, J. W. US 2786852, 1957 [Chem. Abstr. 1957, 51, 48740].
[28] Upare, P. P.; Lee, J.-M.; Hwang, D. W.; Halligudi, S. B.; Hwang, Y. K.; Chang, J. S. J. Ind. Eng. Chem. 2011, 17, 287.
[29] Schuette, H. A.; Thomas, R. W. J. Am. Chem. Soc. 1930, 52, 3010.
[30] (a) Kyrides, L. P.; Craver, J. K. US 2368366, 1945 [Chem. Abstr. 1945, 39, 28552].
(b) Christian, R. V.; Brown, H. D.; Hixon, R. M. J. Am. Chem. Soc. 1947, 69, 1961.
[31] Broadbent, H. S.; Campbell, G. C.; Bartley, W. J.; Johnson, J. H. J. Org. Chem. 1959, 24, 1847.
[32] Manzer, L. E. Appl. Catal. A: Gen. 2004, 272, 249.
[33] Yan, Z.-P.; Lin, L.; Liu, S.-J. Energy Fuels 2009, 23, 3853.
[34] Primo, A.; Concepcion, P.; Corma, A. Chem. Commun. 2011, 47, 3613.
[35] Cervantes, C. O.; García, J. J. Inorg. Chim. Acta 2013, 397, 124.
[36] Du, X.-L.; Liu, Y.-M.; Wang, J.-Q.; Cao, Y.; Fan, K.-N. Chin. J. Catal. 2013, 34, 993.
[37] Yan, K.; Lafleur, T.; Wu, G.-S.; Liao, J.-Y.; Ceng, C.; Xie, X.-M. Appl. Catal. A: Gen. 2013, 468, 52.
[38] Serrano-Ruiz, J. C.; Wang. D.; Dumesic, J. A. Green Chem. 2010, 12, 574.
[39] Ayoub, P. M.; Lange, J. P. WO 2008142127, 2008 [Chem. Abstr. 2008, 150, 7250].
[40] Lange, J. P.; Price. R, Ayoub, P. M.; Louis, J.; Petrus, L.; Clarke, L.; Gosselink, H. Angew. Chem. 2010, 122, 4581.
[41] Skerget, M.; Knez, Z.; Knez-Hrncic, M. J. Chem. Eng. Data 2011, 56, 694.
[42] Han, X.; Poliakoff, M. Chem. Soc. Rev. 2012, 41, 1428.
[43] McHugh, M.; Krukonis, V. Supercritical Fluid Extraction Principle and Practice, Butterworth-Hernemann, Boston, 1994.
[44] Manzer, L. E.; Hutchenson, K. W. US 20040254384, 2004 [Chem. Abstr. 2004, 142, 38134].
[45] Lazzaroni, M. J.; Bush, D.; Jones, R.; Hallett, J. P.; Liotta, C. L.; Eckert, C. A. Fluid Phase Equilib. 2004, 224, 143.
[46] Bourne, R. A.; Stevens, J. G.; Ke, J.; Poliakoff, M. Chem. Commun. 2007, 4632.
[47] Deng, L.; Zhao, Y.; Li, J.; Fu, Y.; Liao, B.; Guo, Q.-X. ChemSusChem 2010, 3, 1172.
[48] (a) Du, X.-L.; He, L.; Zhao, S.; Liu, Y.-M.; Cao, Y.; He, H.-J.; Fan.; K.-N. Angew. Chem., Int. Ed. 2011, 50, 7815.
[49] Yuan, J.; Li, S.-S.; Yu, L.; Liu, Y.-M.; Cao, Y.; He, H.-Y.; Fan, K.-N. Energy Environ. Sci. 2013, 6, 3308.
[50] Alonso, D. M.; Wettstein, S. G.; Bond, J. Q.; Root, T. W.; Dumesic, J. A. ChemSusChem 2011, 4, 1078.
[51] Yan, K.; Chen, A.-C. Fuel 2014, 115, 101.
[52] Kopetzki, D.; Antonietti, M. Green Chem. 2010, 12, 656.
[53] Xin, L.; Zhang, Z.-Y.; Qi, J.; Chadderdon, D. J.; Qiu, Y.; Warsko, K. M.; Li, W.-Z. ChemSusChem 2013, 6, 674.
[54] (a) Al-Shaal, M. G.; Wright, W. R. H.; Palkovits, R. Green Chem. 2012, 14, 1260.
(b) Saravanamurugan, S.; Riisager, A. Catal. Commun. 2012, 17, 71.
(c) Saravanamurugan, S.; Van Buu, O. N.; Riisager, A. ChemSusChem 2011, 4, 723.
[55] Gürbüz, E. I.; Alonso, D. M.; Bond, J. Q.; Dumesic, J. A. ChemSusChem 2011, 4, 357.
[56] Du, X.-L.; Bi, Q.-Y.; Liu, Y.-M.; Cao, Y.; Fan, K.-N. ChemSusChem 2011, 4, 1838.
[57] Hengne, A. M.; Rode, C. V. Green Chem. 2012, 14, 1064.
[58] (a) Chuah, G. K.; Jaenicke, S.; Zhu, Y.-Z.; Liu, S.-H. Curr. Org. Chem. 2006, 10, 1639.
(b) Tang, X.; Sun, Y.; Zeng, X.; Hao, W.; Lin, L.; Liu, S. Energy Fuels 2014, 28, 4251.
(c) Tang, X.; Hu, L.; Sun, Y.; Lin, L. RSC Adv, 2013, 3, 10277.
(d) Wang, J.; Jaenicke, S.; Chuah, G. K. RSC Adv. 2014, 4, 13481.
[59] Chia, M.; Dumesic, J. A. Chem. Commun. 2011, 47, 12233.
[60] Yang, Z.; Huang, Y.-B, Guo, Q.-X.; Fu, Y. Chem. Commun. 2013, 49, 5328.
[61] Tang, X.; Chen, H.-W.; Hu, L.; Hao, W.-W.; Sun, Y.; Zeng, X.-H.; Lin, L.; Liu, S.-J. Appl. Catal. B: Environ. 2014, 147, 82.
[62] Heeres, H.; Handana, R.; Chunai, D.; Rasrendra, C. B.; Girisuta, B.; Heeres, H. J. Green Chem. 2009, 11, 1247.
[63] Alonso, D. M.; Gallo, J. M. R.; Mellmer, M. A.; Wettstein, S. G.; Dumesic, J. A. Catal. Sci. Technol. 2013, 3, 927.
[64] Hengne, A. M.; Kamble, S. B.; Rode, C. V. Green Chem. 2013, 15, 2540.
[65] Bui, L.; Luo, H.; Gunther, W. R.; Román-Leshkov, Y. Angew. Chem., Int. Ed. 2013, 52, 8022.
[66] Alonso, D. M.; Wettstein, S. G.; Mellmer, M. A.; Gurbuz, E. I.; Dumesic, J. A. Energy Environ. Sci. 2013, 6, 76.
[67] (a) Bereczky, Á.; Lukács, K.; Farkas, M.; Dóbé, S. Proceedings of the European Combustion Meeting, 2013, Paper P3-37. ISBN 978-91-637-2151-9. (b) Bruno, T. J.; Wolk, A.; Naydich, A. Energy Fuels 2010, 24, 2758.
[68] Dayma, G.; Halter, F.; Foucher, F.; Togbé, C.; Rousselle, C. M.; Dagaut, P. Energy Fuels 2012, 26, 4735.
[69] Ruiz, J. C. S.; Dumesic, J. A. Energy Environ. Sci. 2011, 4, 83.
[70] Duan, Z.Q.; Hu, F. Green Chem. 2012, 14, 1581.
[71] Gürbüz, E. I.; Gallo, J. M. R.; Alonso, D. M.; Wettstein, S. G.; Lim, W. Y.; Dumesic, J. A. Angew. Chem., Int. Ed. 2013, 52, 1270.
[72] Strádi, A.; Molnár, M.; Óvári, M.; Dibó, G.; Richterb, F. U.; Mika.; L. T. Green Chem. 2013, 15, 1857.
[73] (a) Balat, M. Energy Sources 2005, 27, 569.
(b) Pagliaro, M.; Ciriminna, R.; Kimura, H.; Rossi, M.; Pina, C. D. Angew. Chem., Int. Ed. 2007, 46, 4434.
[74] (a) Kar, Y.; Deveci, H. Energy Sources 2006, 28, 909.
(b) Iborra, S.; Corma, A. Chem. Rev. 2006, 106, 4044.
(c) Alternative Fuel Transportation Program (DOE) (1998) P-series fuels (Proposed Rules). Fed Regist 63:40202. (d) Paul, S. F. WO 9743356, 1997 [Chem. Abstr. 1997, 128, 63757].
[75] (a) Geilen, F. M. A.; Engendahl, B.; Harwardt, A.; Marquardt, W.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2010, 49, 5510.
(b) Du, X.-L.; Bi, Q.-Y.; Liu, Y.-M.; Cao, Y.; He, H.-Y.; Fan, K.-N. Green Chem. 2012, 14, 935.
(c) Upare, P. P.; Lee, J.- M.; Hwang, Y. K.; Hwang, D. W.; Lee, J.-H.; Halligudi, S. B.; Hwang, J. S.; Chang, J.-S. ChemSusChem 2011, 4, 1.
(d) Al-Shaal, M. G.; Dzierbinski, A.; Palkovits, R. Green Chem. 2014, 16, 1358.
[76] Zhao, Y.; Fu, Y.; Guo, Q.-X. Bioresour. Technol. 2012, 114, 740.
[77] Dai, J.-J.; Huang, Y.-B.; Fang, C.; Guo, Q.-X.; Fu, Y. ChemSusChem 2012, 5,617.
[78] (a) Manzer, L. E. Appl. Catal. A 2004, 272, 249.
(b) Manzer, L. E. WO 2004007421, 2004 [Chem. Abstr. 2004, 140, 128809].
[79] (a) Beller, M.; Tafesh, A. M. In Applied Homogeneous Catalysis with Organometallic Compounds, Eds.: Cornils, B.; Herrmann, W. A., VCH, Weinheim, 1996, p. 187.
(b) Drent, E.; Ernst, R.; Jager, W. W.; Krom, C. A. WO 2006084890, 2006 [Chem. Abstr. 2006, 145, 210643].
[80] Lange, J. P.; Vestering, J. Z.; Haan, R. J. Chem. Commun. 2007, 3488.
[81] Zeng, F.-X.; Liu, H.-F.; Deng, L.; Liao, B.; Pang, H.; Guo, Q.-X. ChemSusChem 2013, 6, 600.
[82] (a) Hallett, J. P.; Welton, T. Chem. Rev. 2011, 111, 3508.
(b) Gu,Y.-L.; Zhang, J.; Duan, Z.-Y.; Deng, Y.-Q. Adv. Synth. Catal. 2005, 347, 512.
[83] Chalid, M.; Heeres, H. J.; Broekhuis, A. A. J. Appl. Polym. Sci. 2012, 123, 3556.

Outlines

/